Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isotherm equilibrium factor

Since almost all adsorptive separation processes are based on equilibrium partitioning, the most important factor to consider initially is the adsorption isotherm (equilibrium... [Pg.185]

The isothermal and non-isothermal effectiveness factors for the single unimolecular irreversible reaction. Equilibrium adsorption-desorption model with linear isotherm For simplicity of presentation and without any loss of generality we consider here the case where the bulk temperature and concentration are taken as the reference temperature and concentration. In this case the boundary conditions (5.127) become at fu= 1.0... [Pg.120]

In the equation for the nucleation rate J the classical expression was supplemented by the non-equilibrium factor Z, introduced by Zeldovich, and by the so-called non-isothermal factor 0 (cf. [21 ) ... [Pg.121]

It is evident from Eq. (8.3) that the equilibrium. factor is in general concentration dependent. However, in the special case of a Langmuir equilibrium isotherm... [Pg.224]

The simplest mode of IGC is the infinite dilution mode , effected when the adsorbing species is present at very low concentration in a non-adsorbing carrier gas. Under such conditions, the adsorption may be assumed to be sub-monolayer, and if one assumes in addition that the surface is energetically homogeneous with respect to the adsorption (often an acceptable assumption for dispersion-force-only adsorbates), the isotherm will be linear (Henry s Law), i.e. the amount adsorbed will be linearly dependent on the partial saturation of the gas. The proportionality factor is the adsorption equilibrium constant, which is the ratio of the volume of gas adsorbed per unit area of solid to its relative saturation in the carrier. The quantity measured experimentally is the relative retention volume, Vn, for a gas sample injected into the column. It is the volume of carrier gas required to completely elute the sample, relative to the amount required to elute a non-adsorbing probe, i.e. [Pg.35]

Adsorption — An important physico-chemical phenomenon used in treatment of hazardous wastes or in predicting the behavior of hazardous materials in natural systems is adsorption. Adsorption is the concentration or accumulation of substances at a surface or interface between media. Hazardous materials are often removed from water or air by adsorption onto activated carbon. Adsorption of organic hazardous materials onto soils or sediments is an important factor affecting their mobility in the environment. Adsorption may be predicted by use of a number of equations most commonly relating the concentration of a chemical at the surface or interface to the concentration in air or in solution, at equilibrium. These equations may be solved graphically using laboratory data to plot "isotherms." The most common application of adsorption is for the removal of organic compounds from water by activated carbon. [Pg.163]

Adsorption for gas purification comes under the category of dynamic adsorption. Where a high separation efficiency is required, the adsorption would be stopped when the breakthrough point is reached. The relationship between adsorbate concentration in the gas stream and the solid may be determined experimentally and plotted in the form of isotherms. These are usually determined under static equilibrium conditions but dynamic adsorption conditions operating in gas purification bear little relationship to these results. Isotherms indicate the affinity of the adsorbent for the adsorbate but do not relate the contact time or the amount of adsorbent required to reduce the adsorbate from one concentration to another. Factors which influence the service time of an adsorbent bed include the grain size of the adsorbent depth of adsorbent bed gas velocity temperature of gas and adsorbent pressure of the gas stream concentration of the adsorbates concentration of other gas constituents which may be adsorbed at the same time moisture content of the gas and adsorbent concentration of substances which may polymerize or react with the adsorbent adsorptive capacity of the adsorbent for the adsorbate over the concentration range applicable over the filter or carbon bed efficiency of adsorbate removal required. [Pg.284]

Where activated carbon is a potential treatment technology, the first evaluation step is generally to run simple isotherms to determine feasibility. Isotherms are based on batch treatment where impurities reach equilibrium on available carbon surface. While such tests provide an indication of the maximum amount of impurity a GAC can adsorb, it cannot give definite scale up data for a GAC operation due to several factors ... [Pg.430]

The competitive adsorption isotherms were determined experimentally for the separation of chiral epoxide enantiomers at 25 °C by the adsorption-desorption method [37]. A mass balance allows the knowledge of the concentration of each component retained in the particle, q, in equilibrium with the feed concentration, < In fact includes both the adsorbed phase concentration and the concentration in the fluid inside pores. This overall retained concentration is used to be consistent with the models presented for the SMB simulations based on homogeneous particles. The bed porosity was taken as = 0.4 since the total porosity was measured as Ej = 0.67 and the particle porosity of microcrystalline cellulose triacetate is p = 0.45 [38]. This procedure provides one point of the adsorption isotherm for each component (Cp q. The determination of the complete isotherm will require a set of experiments using different feed concentrations. To support the measured isotherms, a dynamic method of frontal chromatography is implemented based on the analysis of the response curves to a step change in feed concentration (adsorption) followed by the desorption of the column with pure eluent. It is well known that often the selectivity factor decreases with the increase of the concentration of chiral species and therefore the linear -i- Langmuir competitive isotherm was used ... [Pg.244]

In this paper we formulated and solved the time optimal problem for a batch reactor in its final stage for isothermal and nonisothermal policies. The effect of initiator concentration, initiator half-life and activation energy on optimum temperature and optimum time was studied. It was shown that the optimum isothermal policy was influenced by two factors the equilibrium monomer concentration, and the dead end polymerization caused by the depletion of the initiator. When values determine optimum temperature, a faster initiator or higher initiator concentration should be used to reduce reaction time. [Pg.331]

Essentially, extraction of an analyte from one phase into a second phase is dependent upon two main factors solubility and equilibrium. The principle by which solvent extraction is successful is that like dissolves like . To identify which solvent performs best in which system, a number of chemical properties must be considered to determine the efficiency and success of an extraction [77]. Separation of a solute from solid, liquid or gaseous sample by using a suitable solvent is reliant upon the relationship described by Nemst s distribution or partition law. The traditional distribution or partition coefficient is defined as Kn = Cs/C, where Cs is the concentration of the solute in the solid and Ci is the species concentration in the liquid. A small Kd value stands for a more powerful solvent which is more likely to accumulate the target analyte. The shape of the partition isotherm can be used to deduce the behaviour of the solute in the extracting solvent. In theory, partitioning of the analyte between polymer and solvent prevents complete extraction. However, as the quantity of extracting solvent is much larger than that of the polymeric material, and the partition coefficients usually favour the solvent, in practice at equilibrium very low levels in the polymer will result. [Pg.61]

The data of Loukidou et al. (2004) for the equilibrium biosorption of chromium (VI) by Aeromonas caviae particles were well described by the Langmuir and Freundlich isotherms. Sorption rates estimated from pseudo second-order kinetics were in satisfactory agreement with experimental data. The results of XAFS study on the sorption of Cd by B. subtilis were generally in accord with existing surface complexation models (Boyanov et al. 2003). Intrinsic metal sorption constants were obtained by correcting the apparent sorption constants by the Boltzmann factor. A 1 2 metal-ligand stoichiometry provides the best fit to the experimental data with log K values of 6.0 0.2 for Sr(II) and 6.2 0.2 for Ba(II). [Pg.85]

Despite the clear evidence of stereodifferentiation exhibited in the W/A isotherms of these chiral surfactants, the instabilities of the films as spread from solution at temperatures of experimental feasibility prevent a thorough description of the factors that might lead to molecular recognition in monolayers at equilibrium with their environments. Our next line of approach to this problem has been to conduct a broad investigation of the most attractive candidate from this group. [Pg.81]

This term is analogous to relative volatility or its reciprocal (or to an equilibrium selectivity). Similarly, the assumption of a constant separation factor is a useful assumption in many sorptive operations. [It is constant for the Langmuir isotherm, as described below, and for mass-action equilibrium with za = zh in Eq. (16-24).] This gives the constant separation factor isotherm... [Pg.15]

The separation factor r identifies the equilibrium increase in nf from 0 to 1, which accompanies an increase in c from 0 to 1. For a concentration change over only part of the isotherm, a separation factor R can be defined for the dimensionless transition variables [Eq. (16-11)]. This separation factor is... [Pg.15]

When the adsorption equilibrium is nonlinear, skewed peaks are obtained, even when N is large. For a constant separation-factor isotherm with R < 1 (favorable), the leading edge of the chromatographic peak is steeper than the trailing edge. When R > 1 (unfavorable), the opposite is true. [Pg.44]

FIG. 16-35 Elution curves under trace conditions with a constant separation factor isotherm for different feed loadings and N = 80. Solid lines, rate model dashed line, local equilibrium theory for ZF = 0.4. [Pg.45]

The values of q are plotted as a function of the equilibrium concentration. For constituents at low or moderate concentrations, the relationship between q and C can be generated. If n = 1, the (q-C) relationship will be linear (Eq. 9), and the slope of the line (i.e.,ITd) defines the adsorption distribution of the pollutant. Kd is generally identified as the distribution or partition coefficient, and is used to describe pollutant partitioning between liquid and solids only if the reactions that cause the partitioning are fast and reversible, and if the isotherm is linear. For cases where the partitioning of the pollutants can be adequately described by the distribution coefficient (i. e.,fast and reversible adsorption, with linear isotherm), the retardation factor (R) of the subsurface environment can be used as follows ... [Pg.198]


See other pages where Isotherm equilibrium factor is mentioned: [Pg.167]    [Pg.409]    [Pg.167]    [Pg.13]    [Pg.60]    [Pg.286]    [Pg.1497]    [Pg.1507]    [Pg.1064]    [Pg.325]    [Pg.727]    [Pg.771]    [Pg.771]    [Pg.829]    [Pg.130]    [Pg.27]    [Pg.519]    [Pg.263]    [Pg.73]    [Pg.81]    [Pg.57]    [Pg.115]    [Pg.144]    [Pg.139]    [Pg.154]    [Pg.186]    [Pg.684]    [Pg.217]   
See also in sourсe #XX -- [ Pg.224 ]




SEARCH



Equilibrium factor

© 2024 chempedia.info