Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isoprene chlorides

The reaction of isoprene with MeOH catalyzed by Pd(acac)2 and Ph3P is not regioselective, giving a mixture of isomers[37]. However, l-methoxy-2,6-dimethyl-2,7-octadiene (35), the head-to-tail dimer, was obtained in 80% yield, accompanied by the tail-to-tail dimer (15%) using 7r-allylpalladium chloride and BU3P. On heating, 35 was converted into 2.6-dimethyl-1,3,7-octatriene (36) by an elimination reaction[38]. [Pg.428]

Polyolefin Polyester Block copolymers of styrene and butadiene or styrene and isoprene Block copolymers of styrene and ethylene or styrene and butylene Poly(vinyl chloride) and poly(vinyl acetate) ... [Pg.1058]

Bromination of isoprene using Br2 at —5 ° C in chloroform yields only /n j -l,4-dibromo-2-methyl-2-butene (59). Dry hydrogen chloride reacts with one-third excess of isoprene at —15 ° C to form the 1,2-addition product, 2-chloro-2-methyl-3-butene (60). When an equimolar amount of HCl is used, the principal product is the 1,4-addition product, l-chloro-3-methyl-2-butene (61). The mechanism of addition is essentially all 1,2 with a subsequent isomerization step which is catalyzed by HCl and is responsible for the formation of the 1,4-product (60). The 3,4-product, 3-bromo-2-methyl-1-butene, is obtained by the reaction of isoprene with 50% HBr in the presence of cuprous bromide (59). Isoprene reacts with the reactive halogen of 3-chlorocyclopentene (62). [Pg.465]

Isoprene reacts with a-chloroalkyl ethers in the presence of ZnCl in diethyl ether from 0—10°C. For example,a-chloromethyl methyl ether at 10°C gives a 6 1 ratio of the 1,4-adduct, (F)4-chloro-l-methoxy-2-methyl-2-butene, to the 1,2-adduct, 2-chloro-l-methoxy-2-methyl-3-butene. Other a-chloroalkyl ethers react in a similar manner to give predominately the 1,4-addition product. A wide variety of aHyUc chlorides and bromides and a-chloroethers and esters add primarily 1,4- to isoprene in the presence of acid catalysts (8). [Pg.465]

A telomerization reaction of isoprene can be carried out by treatment with 2-chloro-3-pentene, prepared by the addition of dry HCl to 1,3-pentadiene (67). An equimolar amount of isoprene in dichi oromethane reacts with the 2-chloro-3-pentene at 10°C with stannic chloride as catalyst. l-Chloro-3,5-dimethyl-2,6-octadiene is obtained in 80% yield by 1,4-addition. [Pg.465]

Such copolymers of oxygen have been prepared from styrene, a-methylstyrene, indene, ketenes, butadiene, isoprene, l,l-diphen5iethylene, methyl methacrjiate, methyl acrylate, acrylonitrile, and vinyl chloride (44,66,109). 1,3-Dienes, such as butadiene, yield randomly distributed 1,2- and 1,4-copolymers. Oxygen pressure and olefin stmcture are important factors in these reactions for example, other products, eg, carbonyl compounds, epoxides, etc, can form at low oxygen pressures. Polymers possessing dialkyl peroxide moieties in the polymer backbone have also been prepared by base-catalyzed condensations of di(hydroxy-/ f2 -alkyl) peroxides with dibasic acid chlorides or bis(chloroformates) (110). [Pg.110]

Ring Additions Catalyzed by Alkali Metals. The addition of tributyltin chloride and olefins such as styrene, isoprene, or butadiene to sulfolane is cataly2ed by alkah metals, including sodium and lithium, and by sodium amide (10—13). The addition of tributyltin chloride to sulfolane in the... [Pg.68]

Synthesis of P-Methylheptenone from Petrochemical Sources. p-MethyUieptenone (1) is an important intermediate in the total synthesis of terpenes. Continuous hydrochlorination of isoprene [78-79-5] produces prenyl chloride [505-60-6] which then reacts with acetone with a quaternary ammonium catalyst and sodium hydroxide to give P-methyUieptenone (6-methyIhept-5-en-2-one [110-93-0]) (eq. 1) (16—19). [Pg.410]

The first sulfur curable copolymer was prepared ia ethyl chloride usiag AlCl coinitiator and 1,3-butadiene as comonomer however, it was soon found that isoprene was a better diene comonomer and methyl chloride was a better polymerization diluent. With the advent of World War II, there was a critical need to produce synthetic elastomers in North America because the supply of natural mbber was drastically curtailed. This resulted in an enormous scientific and engineering effort that resulted in commercial production of butyl mbber in 1943. [Pg.480]

The free radical initiators are more suitable for the monomers having electron-withdrawing substituents directed to the ethylene nucleus. The monomers having electron-supplying groups can be polymerized better with the ionic initiators. The water solubility of the monomer is another important consideration. Highly water-soluble (relatively polar) monomers are not suitable for the emulsion polymerization process since most of the monomer polymerizes within the continuous medium, The detailed emulsion polymerization procedures for various monomers, including styrene [59-64], butadiene [61,63,64], vinyl acetate [62,64], vinyl chloride [62,64,65], alkyl acrylates [61-63,65], alkyl methacrylates [62,64], chloroprene [63], and isoprene [61,63] are available in the literature. [Pg.198]

Currently, important TPE s include blends of semicrystalline thermoplastic polyolefins such as propylene copolymers, with ethylene-propylene terepolymer elastomer. Block copolymers of styrene with other monomers such as butadiene, isoprene, and ethylene or ethylene/propy-lene are the most widely used TPE s. Styrene-butadiene-styrene (SBS) accounted for 70% of global styrene block copolymers (SBC). Currently, global capacity of SBC is approximately 1.1 million tons. Polyurethane thermoplastic elastomers are relatively more expensive then other TPE s. However, they are noted for their flexibility, strength, toughness, and abrasion and chemical resistance. Blends of polyvinyl chloride with elastomers such as butyl are widely used in Japan. ... [Pg.358]

It forms azeotropic mixts with methylol, carbon disulfide, isopentane, isopropyl halides, isoprene, etc. Prepn is by treating isopropyl ale with nitrosyl chloride. Also, by passing N02 into isopropyl ale at 25—30°. Coml prepn is similar to that of n-propyl nitrite (above). The nitrite has a flash p of < 10°... [Pg.968]

It has been established that alkoxy alkenylcarbene complexes participate as dienophiles in Diels-Alder reactions not only with higher rates but also with better regio- and stereoselectivities than the corresponding esters [95]. This is clearly illustrated in Scheme 51 for the reactions of an unsubstituted vinyl complex with isoprene. This complex reacts to completion at 25 °C in 3 h whereas the cycloaddition reaction of methyl acrylate with isoprene requires 7 months at the same temperature. The rate enhancement observed for this complex is comparable to that for the corresponding aluminium chloride-catalysed reactions of methyl acrylate and isoprene (Scheme 51). [Pg.94]

A broad study of aluminum chloride-induced cycloadditions of cyclopente-nones, cyclohexenones and cycloheptenones with 1,3-butadiene (1), isoprene... [Pg.100]

The isothiocyanate (21) reacted with dienes to give the phosphoranes (22) more rapidly than did the corresponding fluoride and chloride, but less rapidly than did the bromide. The rates of reactions of (21) with various dienes were in the order isoprene > butadiene > piperylene > chloroprene. These data support the previous suggestion that attack on the diene is an electrophilic process. [Pg.34]

Observations on the polymerization of readily polymerizable vinyl monomers such as styrene, vinyl chloride, and butadiene date back approximately to the first recorded isolation of the monomer in each case. Simon 2 reported in 1839 the conversion of styrene to a gelatinous mass, and Berthelot applied the term polymerization to the process in 1866. Bouchardat polymerized isoprene to a rubberlike substance. Depolymerization of a vinyl polymer to its monomer (and other products as well) by heating at elevated temperatures was frequently noted. Lemoine thought that these transformations of styrene could be likened to a reversible dissociation, a commonly held view. While the terms polymerization and depolymerization were quite generally applied in this sense, the constitution of the polymers was almost completely unknown. [Pg.20]

Polymerization Aliphatic, aromatic and oxygenated monomers Vinyl chloride Isoprene Acrylonitrile Catalyst activation... [Pg.631]

The activity of transition metal allyl compounds for the polymerization of vinyl monomers has been studied by Ballard, Janes, and Medinger (10) and their results are summarized in Table II. Monomers that polymerize readily with anionic initiators, such as sodium or lithium alkyls, polymerize vigorously with allyl compounds typical of these are acrylonitrile, methyl methacrylate, and the diene isoprene. Vinyl acetate, vinyl chloride, ethyl acrylate, and allylic monomers do not respond to these initiators under the conditions given in Table II. [Pg.270]

Materials. 5-Methyl-1,4-hexadiene was obtained by the codimerization of isoprene and ethylene with a catalyst (18) consisting of iron octanoate, triethylaluminum and 2,2 -bi-pyridyl. The product mixture which contained principally 5-methyl-1,4-hexadiene and 4-methy1-1,4-hexadiene was fractionated through a Podbielniack column to yield high purity (>99%) 5-methylxhexadiene, b.p. 92.80C,njj 1.4250 (Lit. (19) b.p. 88-89°C, np 1.4249). 1-Hexene (99.9% purity), 1-decene (99.6% purity), 4-methyl-1-hexene (99.5% purity) and 5-methyl-l-hexene (99.7% purity) were obtained from Chemical Samples Co. 6-TiCl3 AA (Stauffer Chemical Co.j contains 0.33 mole AICI3 per mole of TiClj). Diethylaluminum Chloride was obtained from Texas Alkyls (1.5 M in hexane). [Pg.173]

The most industrially significant polymerizations involving the cationic chain growth mechanism are the various polymerizations and copolymerizations of isobutylene. In fact, about 500 million pounds of butyl rubber, a copolymer of isobutylene with small amounts of isoprene, are produced annually in the United States via cationic polymerization [126]. The necessity of using toxic chlorinated hydrocarbon solvents such as dichloromethane or methyl chloride as well as the need to conduct these polymerizations at very low temperatures constitute two major drawbacks to the current industrial method for polymerizing isobutylene which may be solved through the use of C02 as the continuous phase. [Pg.130]

Asymmetric telomerization of isoprene and methanol by using chiral phosphines, such as menthyldiphenylphosphine, gave an optical yield of 17.6%. The telomerization of methanol and isoprene using w-allylpalla-dium chloride and PBu3 in the presence of sodium methoxide in a mixed solvent of methanol and isopropyl alcohol at room temperature for 2 days produced l-methoxy-2,6-dimethyl-2,7-octadiene (89) (80%) and 1-meth-oxy-2,7-dimethyl-2,7-octadiene (91) (15%) (91). After 2 days, the reaction mixture was heated at 80°C for 8 hours, and 2,6-dimethyl-l,3,7-octatriene (88) (75%) and 2,7-dimethyl-1,3,7-octatriene (85) (14%) were obtained. Also, NiCl2(Bu3P)2 was used as a cocatalyst for the formation of 88. [Pg.170]

Modification of crs-poly(butadiene) and cA-poly(isoprene) has been attained on heating in boiling toluene, in the presence of mononitrile oxides 35%-55% of C=C bonds have been replaced by isoxazoline fragments. The process also demands the presence of a base because the nitrile oxides have been generated from hydroximoyl chlorides (505). [Pg.103]

Isophthaloyl chlorides, 19 715 Isophytol, 24 502, 550 Isopolytungstate compounds structures of, 25 383-384 Iso prefix, 13 594-595 Isoprene, 24 501 Alfrey-Price parameters, 7 617t block copolymer synthesis, 7 647t butyl rubber polymers, 4 433 commercial block copolymers, 7 648t glass transition and melting... [Pg.496]

A solution of isobutene and isoprene (1-3 mole per cent) in methyl chloride is cooled to -100°C and introduced along with a solution of AICI3 in CH3C1 in the reactor. The product obtained as a slurry is... [Pg.154]

Sudo and Saigo153 reported the application of ds-2-amino-3,3-dimethyl-l-indanol derived l,3-oxazolidin-2-one 231 as a chiral auxiliary in asymmetric Diels-Alder reactions. The TV-crotonyl and TV-acryloyl derivatives were reacted with cyclopentadiene, 1,3-cyclohexadiene, isoprene and 2,3-dimethyl-l,3-butadiene, using diethylaluminum chloride as the Lewis acid catalyst. The reactions afforded the expected cycloadducts in moderate to high yields (33-97%) with high endo selectivities and high de values (92% to >98%). [Pg.383]

Taguchi and coworkers175 studied the Lewis acid catalyzed asymmetric Diels-Alder reactions of chiral 2-fluoroacrylic acid derivatives with isoprene and cyclopentadiene. When a chiral l,3-oxazolidin-2-one and diethylaluminum chloride were used as the chiral auxiliary and the Lewis acid catalyst, respectively, a de of 90% was observed for the reaction with isoprene. The reaction with cyclopentadiene afforded a 1 1 mixture of endo and exo isomers with de values of 95% and 96%, respectively. The endo/exo selectivity was improved by using 8-phenylmenthol as the chiral auxiliary. Thus, the reaction... [Pg.392]

Diastereoselectivities of up to 90% were observed for the cycloadditions of jV-galaclosy-limines 108 (Piv = pivalyl R = 2-furyl, 2-thienyl-, 4-FC6H4, 4-ClC6f or 3-pyridyl) to isoprene in the presence of zinc chloride to form the tetrahydropyridines 109 and 110 (equation 62)55. [Pg.502]

Cycloadditions to a cyano group are comparatively rare. The high-temperature reactions of 1,3-dienes, e.g. butadiene, isoprene and 2-chloro-l,3-butadiene, with dicyanogen, propionitrile or benzonitrile result in formation of pyridines (equation 80)70. Sulfonyl cyanides 147, obtained by the action of cyanogen chloride on sodium salts of sulfinic acids, add to dienes to give dihydropyridines 148, which are transformed into pyridines 149 by oxidation (equation 81)71. [Pg.508]


See other pages where Isoprene chlorides is mentioned: [Pg.234]    [Pg.466]    [Pg.149]    [Pg.481]    [Pg.482]    [Pg.482]    [Pg.483]    [Pg.87]    [Pg.29]    [Pg.29]    [Pg.739]    [Pg.81]    [Pg.607]    [Pg.216]    [Pg.365]    [Pg.630]    [Pg.90]    [Pg.304]    [Pg.577]   
See also in sourсe #XX -- [ Pg.96 , Pg.298 ]




SEARCH



Allylic chlorides, reactions with isoprene

© 2024 chempedia.info