Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isobutylene, reaction with

Isobutylene, reaction with chlorosul fonyl isocyanate, 46, 52 Isobutyryl fluoride, 45, 6 Isocyanates, acyl, derivatives of, 46, 17... [Pg.131]

With higher alkenes, three kinds of products, namely alkenyl acetates, allylic acetates and dioxygenated products are obtained[142]. The reaction of propylene gives two propenyl acetates (119 and 120) and allyl acetate (121) by the nucleophilic substitution and allylic oxidation. The chemoselective formation of allyl acetate takes place by the gas-phase reaction with the supported Pd(II) and Cu(II) catalyst. Allyl acetate (121) is produced commercially by this method[143]. Methallyl acetate (122) and 2-methylene-1,3-diacetoxypropane (123) are obtained in good yields by the gas-phase oxidation of isobutylene with the supported Pd catalyst[144]. [Pg.38]

Methylphenol is converted to 6-/ f2 -butyl-2-methylphenol [2219-82-1] by alkylation with isobutylene under aluminum catalysis. A number of phenoHc anti-oxidants used to stabilize mbber and plastics against thermal oxidative degradation are based on this compound. The condensation of 6-/ f2 -butyl-2-methylphenol with formaldehyde yields 4,4 -methylenebis(2-methyl-6-/ f2 butylphenol) [96-65-17, reaction with sulfur dichloride yields 4,4 -thiobis(2-methyl-6-/ f2 butylphenol) [96-66-2] and reaction with methyl acrylate under base catalysis yields the corresponding hydrocinnamate. Transesterification of the hydrocinnamate with triethylene glycol yields triethylene glycol-bis[3-(3-/ f2 -butyl-5-methyl-4-hydroxyphenyl)propionate] [36443-68-2] (39). 2-Methylphenol is also a component of cresyHc acids, blends of phenol, cresols, and xylenols. CresyHc acids are used as solvents in a number of coating appHcations (see Table 3). [Pg.67]

Ritter Reaction (Method 4). A small but important class of amines are manufactured by the Ritter reaction. These are the amines in which the nitrogen atom is adjacent to a tertiary alkyl group. In the Ritter reaction a substituted olefin such as isobutylene reacts with hydrogen cyanide under acidic conditions (12). The resulting formamide is then hydroly2ed to the parent primary amine. Typically sulfuric acid is used in this transformation of an olefin to an amine. Stoichiometric quantities of sulfate salts are produced along with the desired amine. [Pg.200]

The / f/-butanol (TBA) coproduct is purified for further use as a gasoline additive. Upon reaction with methanol, methyl tert-huty ether (MTBE) is produced. Alternatively the TBA is dehydrated to isobutylene which is further hydrogenated to isobutane for recycle ia the propylene oxide process. [Pg.139]

Sulfuric acid is about one thousand times more reactive with isobutylene than with the 1- and 2-butenes, and is thereby very useful in separating isobutylene as tert-huty alcohol from the other butenes. The reaction is simply carried out by bubbling or stirring the butylenes into 45—60% H2SO4. This results in the formation of tert-huty hydrogen sulfate. Dilution with water followed by heat hydrolyzes the sulfate to form tert-huty alcohol and sulfuric acid. The Markovnikov addition implies that isobutyl alcohol is not formed. The hydration of butylenes is most important for isobutylene, either directiy or via the butyl hydrogen sulfate. [Pg.363]

Separation and Purification of Isomers. 1-Butene and isobutylene caimot be economically separated into pure components by conventional distHlation because they are close boiling isomers (see Table 1 and Eig. 1). 2-Butene can be separated from the other two isomers by simple distHlation. There are four types of separation methods avaHable (/) selective removal of isobutylene by polymeriza tion and separation of 1-butene (2) use of addition reactions with alcohol, acids, or water to selectively produce pure isobutylene and 1-butene (3) selective extraction of isobutylene with a Hquid solvent, usuaHy an acid and (4) physical separation of isobutylene from 1-butene by absorbents. The first two methods take advantage of the reactivity of isobutylene. Eor example, isobutylene reacts about 1000 times faster than 1-butene. Some 1-butene also reacts and gets separated with isobutylene, but recovery of high purity is possible. The choice of a particular method depends on the product slate requirements of the manufacturer. In any case, 2-butene is first separated from the other two isomers by simple distHlation. [Pg.368]

I eopentanoic (Pivalic) Acid. Neopentanoic acid [75-98-9] is prepared using the Koch technology in which isobutylene reacts with carbon monoxide in the presence of strong acids such as H2SO4, HF, and BF H20 (119—122). General reaction conditions are 2—10 MPa (about 20—100 atm) of CO and 40-150°C. [Pg.373]

Isobutylene oxide is produced in a way similar to propylene oxide and butylene oxide by a chlorohydrination route followed by reaction with Ca(OH)2. Direct catalytic liquid-phase oxidation using stoichiometric amounts of thallium acetate catalyst in aqueous acetic acid solution has been reported. An isobutylene oxide yield of 82% could be obtained. [Pg.251]

Amines can be N-alkylated by reaction with alcohols, in a sealed tube with irradiation by microwaves, with the alcohol and RuCl2(PPh3)2, or by treatment with the amine, SnCl2 and Pd(PPh3)4. Chlorodiethylaluminum (Et2AlCl), with a Cu(ll) catalysts can N-ethylate aniline derivatives. tcrt-Butylamines can be prepared from isobutylene, HBr and the amine by heating a sealed tube. ... [Pg.501]

Schrauzer and co-workers have studied the kinetics of alkylation of Co(I) complexes by organic halides (RX) and have examined the effect of changing R, X, the equatorial, and axial ligands 148, 147). Some of their rate constants are given in Table II. They show that the rates vary with X in the order Cl < Br < I and with R in the order methyl > other primary alkyls > secondary alkyls. Moreover, the rate can be enhanced by substituents such as Ph, CN, and OMe. tert-Butyl chloride will also react slowly with [Co (DMG)2py] to give isobutylene and the Co(II) complex, presumably via the intermediate formation of the unstable (ert-butyl complex. In the case of Co(I) cobalamin, the Co(II) complex is formed in the reaction with isopropyl iodide as well as tert-butyl chloride. Solvent has only a slight effect on the rate, e.g., the rate of reaction of Co(I) cobalamin... [Pg.353]

Pampus and co-workers (65) established the relative reactivity of a series of olefins to be 1-butene > 2-butene > isobutylene. This order of reactivity has been confirmed by others, and exactly parallels the reported order of stability of transition metal (Rh) complexes with these olefins (66), thus clearly implicating precomplexation of the olefin with the transition metal prior to metathesis. On a limited scale, Schrock observed a similar order of reactivity for olefins in reactions with (175-C5H5 )TaCl2[=CH(CH3 )3 ], which is known to possess a nucleophilic car-bene carbon (64). This complex also provides the requisite empty coordination site needed for precomplexation. In that study, cyclopropanes or metathesis olefins were not observed as products. [Pg.462]

The crucial step in self-alkylation is decomposition of the butoxy group into a free Brpnsted acid site and isobutylene (proton transfer from the Fbutyl cation to the zeolite). Isobutylene will react with another t-butyl cation to form an isooctyl cation. At the same time, a feed alkene repeats the initiation step to form a secondary alkyl cation, which after accepting a hydride gives the Fbutyl cation and an -alkane. The overall reaction with a linear alkene CnH2n as the feed is summarized in reaction (10) ... [Pg.272]

Table III provides a comparison of alkylate compositions for both the liquid acid-catalyzed reactions with various feed alkenes. The data show that H2SO4 produces a better alkylate with 1-butene, whereas HF gives better results with propene or isobutylene. The products from 2-butene and also from pentenes (not shown in Table III) are nearly the same with either acid. Table III provides a comparison of alkylate compositions for both the liquid acid-catalyzed reactions with various feed alkenes. The data show that H2SO4 produces a better alkylate with 1-butene, whereas HF gives better results with propene or isobutylene. The products from 2-butene and also from pentenes (not shown in Table III) are nearly the same with either acid.
Isobutylene is the most chemically reactive of the butylene isopiers. If the objective is just to get the isobutylene out of the C4 stream, it can be removed by reaction with methanol (CH3OH) to make MTBE (methyl tertiary butyl ether), by reaction with water to make TBA (tertiary butyl alcohol), by polymerization, or by solvent extraction. After that, butene-1 can be removed by selective adsorption or by distillation. That leaves the butene-2 components, together with iso- and normal butane, which are generally used as feed to an alkylation plant. [Pg.90]

The isomerization of light olefins is usually carried out to convert -butenes to isobutylene [12] with the most frequently studied zeolite for this operation being PER [30]. Lyondell s IsomPlus process uses a PER catalyst to convert -butenes to isobutylene or n-pentenes to isopentene [31]. Processes such as this were in larger demand to generate isobutene before the phaseout of MTBE as a gasoline additive. Since the phaseout, these processes often perform the reverse reaction to convert isobutene to n-butenes which are then used as a metathesis feed [32]. As doublebond isomerization is much easier than skeletal isomerization, most of the catalysts below are at equilibrium ratios of the n-olefins as the skeletal isomerization begins (Table 12.5). [Pg.358]

Evidence for reaction by both mechanisms is that isobutylene reacts with benzene at 300° to produce (erl-butylbenzene and isobutylbenzene. The first mechanism would produce (eri-butylbenzene the second, isobutylbenzene. These compounds were obtained in a ratio of 1 5 (W). [Pg.140]

The reaction of isobutylene with 91% sulfuric acid at 0° yielded a product which contained 63% of paraffin in the fraction boiling below 200° when 87% sulfuric acid was used only traces of paraffins were found in the corresponding fraction, while with 77 % acid no paraffins at all were produced. No polymerization of isobutylene occurred with 67% acid at 0° at 35°, on the other hand, polymer composed of di- and triisobutylene was obtained. [Pg.64]

Water, alcohols, ethers, or amines can cause inhibition of ionic polymerization. However, these substances can act in different ways according to their concentration. For example, in polymerizations initiated by Lewis acids (BF3 with isobutylene) or organometallic compounds (aluminum alkyls), water in small concentrations behaves as a cocatalyst, but in larger concentrations as an inhibitor (reaction with the initiator or with the ionic propagating species). [Pg.66]

With this radical, the highest add/fcabs (0.19) was for the reaction with isobutylene. This is consistent in order, but not magnitude, with the results for the benzophenone n,n triplet where the highest ratio (> 13) was also with isobutylene.17 In comparison to this alkoxy radical, there is a much greater tendency for the benzophenone n,-n triplet to add to, rather than abstract hydrogen from, an olefin. [Pg.322]

The mechanism most consistent with all the data is an ionic acid opening of the epoxide —apparently where the hydrocarbonyl is used as an acid to attack the epoxide— which is more sensitive to steric effects than to electronic factors. This conclusion may at first appear to be inconsistent with our previous finding that isobutylene reacted with cobalt hydrocarbonyl to give exclusively addition of the cobalt to the tertiary position. The inhibitory effect of carbon monoxide on that reaction, however, indicated that it was probably cobalt hydrotricarbonyl that was actually adding to the olefin and steric effects would be expected to be much less important with the tricarbonyl than with the tetracarbonyl (7) Apparently he feels now that the former reactions really involve the tricarbonyl, loss of CO being important to get the reaction running whereas epoxide attack perhaps involves a tetracarbonyl, steric factors are more important here. [Pg.212]

Comparison of Experiments 45, 49, and 47, which differ reaction times, shows that the rates of formation of most product Ri decrease gradually with time. CO might be both a primary and secondary product, but the yields of isobutylene increase with time, indicating that it is partly a secondary product. [Pg.58]


See other pages where Isobutylene, reaction with is mentioned: [Pg.104]    [Pg.54]    [Pg.215]    [Pg.124]    [Pg.65]    [Pg.86]    [Pg.52]    [Pg.71]    [Pg.327]    [Pg.481]    [Pg.185]    [Pg.53]    [Pg.393]    [Pg.187]    [Pg.211]    [Pg.30]    [Pg.251]    [Pg.78]    [Pg.430]   


SEARCH



Isobutylene

Isobutylene ferf-butyl reaction with

Isobutylene, reaction with acids

© 2024 chempedia.info