Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isobutylene polyisobutylene

Derivatives of polyisobutylene (6. in Figure 9.1) offer the advantage of control over the molecular weight of the polyisobutylene obtained by cationic polymerization of isobutylene. Condensation on maleic anhydride can be done directly either by thermal activation ( ene-synthesis reaction) (2.1), or by chlorinated polyisobutylene intermediates (2.2). The condensation of the PIBSA on polyethylene polyamines leads to succinimides. Note that one can obtain mono- or disuccinimides. The mono-succinimides are used as... [Pg.348]

Polybutenes. Polybutenes are produced by controlled polymerization of butenes and isobutene (isobutylene) (see Butylenes). A typical polyisobutylene stmcture is... [Pg.264]

Polymers account for about 3—4% of the total butylene consumption and about 30% of nonfuels use. Homopolymerization of butylene isomers is relatively unimportant commercially. Only stereoregular poly(l-butene) [9003-29-6] and a small volume of polyisobutylene [25038-49-7] are produced in this manner. High molecular weight polyisobutylenes have found limited use because they cannot be vulcanized. To overcome this deficiency a butyl mbber copolymer of isobutylene with isoprene has been developed. Low molecular weight viscous Hquid polymers of isobutylene are not manufactured because of the high price of purified isobutylene. Copolymerization from relatively inexpensive refinery butane—butylene fractions containing all the butylene isomers yields a range of viscous polymers that satisfy most commercial needs (see Olefin polymers Elastomers, synthetic-butylrubber). [Pg.374]

Grades of polyisobutylene, butyl mbber, halogenated butyl mbber, and partially cross-linked isobutylene—isopiene—divinylbenzene terpolymer have been developed to meet specific processing and property needs. Recently, two new polyisobutylene-based elastomers have been developed. One is now available commercially as Exxon SB Butyl Polymers (32) and the other is under market development as Exxon bromo XP-50. [Pg.481]

Blends of isobutylene polymers with thermoplastic resins are used for toughening these compounds. High density polyethylene and isotactic polypropylene are often modified with 5 to 30 wt % polyisobutylene. At higher elastomer concentration the blends of butyl-type polymers with polyolefins become more mbbery in nature, and these compositions are used as thermoplastic elastomers (98). In some cases, a halobutyl phase is cross-linked as it is dispersed in the polyolefin to produce a highly elastic compound that is processible in thermoplastic mol ding equipment (99) (see Elastomers, synthetic-thermoplastic). ... [Pg.487]

Polyisobutylene and isobutylene—isoprene copolymers are considered to have no chronic hazard associated with exposure under normal industrial use. Some grades can be used in chewing-gum base, and are regulated by the PDA in 21 CPR 172.615. Vulcanized products prepared from butyl mbber or halogenated butyl mbber contain small amounts of toxic materials as a result of the particular vulcanization chemistry. Although many vulcanizates are inert, eg, zinc oxide cured chlorobutyl is used extensively in pharmaceutical stoppers, specific recommendations should be sought from suppHers. [Pg.487]

Until the mid-1950s the only polyolefins (polyalkenes) of commercial importance were polyethylene, polyisobutylene and isobutylene-isoprene copolymers (butyl rubber). Attempts to produce polymers from other olefins had, at best, resulted only in the preparation of low molecular weight material of no apparent commercial value. [Pg.247]

Butyl rubber (BR) and polyisobutylene (PIB) are widely used in adhesives as primary elastomeric binders and as tackifiers and modifiers. The main difference between these polymers is that butyl is a copolymer of isobutylene with a minor amount of isoprene (which introduces unsaturation due to carbon-carbon double bonds), while polyisobutylene is a homopolymer. [Pg.584]

Polyisobutylene has a similar chemical backbone to butyl rubber, but does not contain double carbon-carbon bonds (only terminal unsaturation). Many of its characteristics are similar to butyl rubber (ageing and chemical resistance, low water absorption, low permeability). The polymers of the isobutylene family have very little tendency to crystallize. Their strength is reached by cross-linking instead of crystallization. The amorphous structure of these polymers is responsible for their flexibility, permanent tack and resistance to shock. Because the glass transition temperature is low (about —60°C), flexibility is maintained even at temperatures well below ambient temperature. [Pg.584]

In view of the great structural similarity between the propagating sites in the cationic polymerization of P-PIN and isobutylene and their respective polymers (4), and our considerable experience accumulated with the LC Pzn of isobutylene [1-3], efforts have been made to adapt LC Pzn conditions found to yield living polyisobutylenes for the polymerization of p-PIN. [Pg.3]

In previous papers1,2 we described reactivity studies of cationic isobutylene polymerization using r-butyl halide initiators, alkylaluminum coinitiators and methyl halide solvents. The effects of these reagents as well as temperature on the overall rate of polymerization and polyisobutylene (PIB) yield were studied and reactivity orders were established. These results were explained by a modified initiation mechanism based on an earlier model proposed by Kennedy and co-workers3,4. This paper concerns the effects of f-butyl halide, alkylaluminums and methyl halide, as well as temperature and isobutylene concentration on PIB molecular weights. [Pg.115]

Cao X. and Faust R., Polyisobutylene based thermoplastic elastomer 5. Poly(styrene-b-isobutylene-b-styrene) tri-block copolymers by coupling of living poly(styrene-b-isobutylene) di-block copolymers. Macromolecules, 32, 5487, 1999. [Pg.154]

Nagy, A., Qrszagh, I., and Kennedy, J.P. Living carbocationic copolymerizations. II. Reactivity ratios and microstructures of isobutylene/p-methylstyrene copolymers, J. Phys. Org. Chem., 8, 273, 1995. Puskas, J.E. and Paulo, C. Synthesis and Characterization of Hyperbranched Polyisobutylenes. Proceedings of the World Polymer Congress (lUPAC Macro 2000), 384, 2000. [Pg.217]

Puskas, J.E., Brister, L.B., Michef A J., I-anzenddrfer, M.G., Jamieson, D., and Pattern, W.G. Novel substituted epoxide initiators for the carbocationic pol3mierization of isobutylene, 7. Polym. Set, 38,444-451, 2000. Puskas, J.E. and Michel, A.J. New epoxy initiators for the controlled synthesis of functionalized polyisobutylenes, Makromol. Chem., Macromol. Symp., 161, 141-148, 2000. [Pg.219]

Sulfonated polystyrene-b-(isobutylene)-l7-sulfonated polystyrene (S-SIBS) with lEC between 0.5 and 1.0 mmol/g also exhibits approximately 5-10 times higher selectivity than Nafion llZ o The increased selectivity is thought to be due to lower MeOH and water solubility in polyisobutylene, the major... [Pg.124]

Similarly, the polymerization process will pull the isobutylene selectively out of the C4 stream. Polyisobutylene is used mainly as a viscosity index improver in lubricating oils and in caulking and sealing compounds. Some of the low molecular weight polyisobutylenes are particularly suited for use in the construction field because it doesn t solidify. They remain a tacky fluid and when properly formulated with clay fillers, etc., take on the properties of a sticky, putty-like substance. [Pg.94]

High purity isobutylene is used in numerous applications beside the polyisobutylene just mentioned butyl rubber, 0x0 alcohols, tertiary butyl alcohols, di- and tri-isobutylene and methyl methacrylate. [Pg.94]

The major uses of isobutylene are estimated in Table 8.5. Much of isobutylene is a captive market used by refineries in alkylation or polymerization of gasoline. The remainder goes into the octane enhancer MTBE, polyisobutylene, and butyl rubber. Some is burned for fuel. [Pg.127]

The type of products depends largely on the reaction temperature (Thomaset al., 81). At the boiling point of the isobutylene (— 6°) polymerization in the presence of boron fluoride yielded an oil after a considerable induction period. On the other hand, if the isobutylene was precooled to — 80° an immediate reaction occurred with almost explosive violence, producing a polymer of a very much higher molecular weight. The molecular weight of the polyisobutylene molecule increased from... [Pg.71]


See other pages where Isobutylene polyisobutylene is mentioned: [Pg.1060]    [Pg.1060]    [Pg.313]    [Pg.296]    [Pg.481]    [Pg.481]    [Pg.483]    [Pg.229]    [Pg.584]    [Pg.14]    [Pg.17]    [Pg.20]    [Pg.42]    [Pg.83]    [Pg.85]    [Pg.301]    [Pg.881]    [Pg.218]    [Pg.43]    [Pg.130]    [Pg.131]    [Pg.733]    [Pg.46]    [Pg.308]    [Pg.316]    [Pg.125]    [Pg.30]    [Pg.335]    [Pg.410]    [Pg.440]   
See also in sourсe #XX -- [ Pg.773 , Pg.774 ]




SEARCH



Isobutylene

Polyisobutylene

Polyisobutylenes

© 2024 chempedia.info