Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radicals iron overload

A molecule that binds iron through coordinating moieties (e.g., carboxylates or amines). They are used to inhibit iron-catalyzed free radical reactions or to treat iron overload conditions. Desferrioxamine and defer-iprone are two widely used iron chelators. [Pg.665]

Although iron deficiency is a common problem, about 10% of the population are genetically at risk of iron overload (hemochromatosis), and elemental iron can lead to nonen2ymic generation of free radicals. Absorption of iron is stricdy regulated. Inorganic iron is accumulated in intestinal mucosal cells bound to an intracellular protein, ferritin. Once the ferritin in the cell is saturated with iron, no more can enter. Iron can only leave the mucosal cell if there is transferrin in plasma to bind to. Once transferrin is saturated with iron, any that has accumulated in the mucosal cells will be lost when the cells are shed. As a result of this mucosal barrier, only about 10% of dietary iron is normally absorbed and only 1-5% from many plant foods. [Pg.478]

Iron overload is known to be toxic and potentially fatal. The major pathological effects of hepatic iron overload are fibrosis and cirrhosis, and hepatocellular carcinoma (Bonkovsky, 1991). The role of free radicals in the pathology of hepatic iron overload has been the subject of a detailed review recently (Bacon and Britton, 1990). [Pg.157]

Bacon, B.R, and Britton, R.S. (1990). The pathology of hepatic iron overload a free radical-mediated process Hepatology 11, 127-137. [Pg.161]

Selden, C., Seymour, C.A. and Peters, T.J. (1980). Activities of some free radical scavenging enzymes and glutathione concentrations in human and rat liver and their relationship to the pathogenesis of tissue damage in iron overload. Clin. Sci. 58, 211-219. [Pg.170]

A particular instance of iron overload being associated with liver injury, with free radicals again being implicated, is the hepatic porphyria and hepatocarcinoma induced by polyhalogenated aromatic chemicals. This is described separately below. [Pg.239]

Formation of hydroxyl radicals has been suggested in many studies, which are considered in subsequent chapters in connection with the mechanisms of lipid peroxidation and protein and DNA destruction as well as the mechanisms of free radical pathologies. Furthermore, hydroxyl radical generation occurs under the conditions of iron overload and is considered below. [Pg.695]

In addition to the well-known iron effects on peroxidative processes, there are also other mechanisms of iron-initiated free radical damage, one of them, the effect of iron ions on calcium metabolism. It has been shown that an increase in free cytosolic calcium may affect cellular redox balance. Stoyanovsky and Cederbaum [174] showed that in the presence of NADPH or ascorbic acid iron ions induced calcium release from liver microsomes. Calcium release occurred only under aerobic conditions and was inhibited by antioxidants Trolox C, glutathione, and ascorbate. It was suggested that the activation of calcium releasing channels by the redox cycling of iron ions may be an important factor in the stimulation of various hepatic disorders in humans with iron overload. [Pg.709]

Iron-stimulated free radical-mediated processes are not limited to the promotion of peroxidative reactions. For example, Pratico et al. [188] demonstrated that erythrocytes are able to modulate platelet reactivity in response to collagen via the release of free iron, which supposedly catalyzes hydroxyl radical formation by the Fenton reaction. This process resulted in an irreversible blood aggregation and could be relevant to the stimulation by iron overload of atherosclerosis and coronary artery disease. [Pg.710]

As a rule, oxygen radical overproduction in mitochondria is accompanied by peroxidation of mitochondrial lipids, glutathione depletion, and an increase in other parameters of oxidative stress. Thus, the enhancement of superoxide production in bovine heart submitochondrial particles by antimycin resulted in a decrease in the activity of cytochrome c oxidase through the peroxidation of cardiolipin [45]. Iron overload also induced lipid peroxidation and a decrease in mitochondrial membrane potential in rat liver mitochondria [46]. Sensi et al. [47] demonstrated that zinc influx induced mitochondrial superoxide production in postsynaptic neurons. [Pg.752]

The efficiency of vitamin E in the suppression of free radical-mediated damage induced by iron overload has been studied in animals and humans. Galleano and Puntarulo [46] showed that iron overload increased lipid and protein peroxidation in rat liver. Vitamin E supplementation successfully suppressed these effects and led to an increase in a-tocopherol, ubiquinone-9, and ubiquinone-10 contents in liver. Important results were obtained by Roob et al. [47] who found that vitamin E supplementation attenuated lipid peroxidation (measured as plasma MDA and plasma lipid peroxides) in patients on hemodialysis after receiving iron hydroxide sucrose complex intravenously during hemodialysis session. These findings support the proposal that iron overload enhances free radical-mediated damage in humans. [Pg.853]

Chelators of transition metals, mainly iron and copper, are usually considered as antioxidants because of their ability to inhibit free radical-mediated damaging processes. Actually, the so-called chelating therapy has been in the use probably even earlier than antioxidant therapy because it is an obvious pathway to treat the development of pathologies depending on metal overload (such as calcium overload in atherosclerosis or iron overload in thalassemia) with compounds capable of removing metals from an organism. Understanding of chelators as antioxidants came later when much attention was drawn to the possibility of in vivo hydroxyl radical formation via the Fenton reaction ... [Pg.895]

Ponka et al. [372] showed that pyridoxal isonicotinoyl hydrazone (PIH, Figure 19.23) is an iron chelating agent. Numerous studies showed the possibility of using this chelator for the treatment of iron overload disease [373], In subsequent studies the antioxidant activity of PIN has been confirmed. For example, Hermes-Lima et al. [374,375] showed that PIN protected plasmid pUC-18 DNA and 2-deoxyribose against hydroxyl radical damage. [Pg.895]

An important factor in pathogenesis of chronic hepatitis C is iron overload. Casaril et al. [346] found that even a mild increase in iron content caused additional free radical-mediated... [Pg.938]

Overproduction of free radicals by erythrocytes and leukocytes and iron overload result in a sharp increase in free radical damage in T1 patients. Thus, Livrea et al. [385] found a twofold increase in the levels of conjugated dienes, MDA, and protein carbonyls with respect to control in serum from 42 (3-thalassemic patients. Simultaneously, there was a decrease in the content of antioxidant vitamins C (44%) and E (42%). It was suggested that the iron-induced liver damage in thalassemia may play a major role in the depletion of antioxidant vitamins. Plasma thiobarbituric acid-reactive substances (TBARS) and conjugated dienes were elevated in (3-thalassemic children compared to controls together with compensatory increase in SOD activity [386]. The development of lipid peroxidation in thalassemic erythrocytes probably depends on a decrease in reduced glutathione level and decreased catalase activity [387]. [Pg.941]


See other pages where Radicals iron overload is mentioned: [Pg.116]    [Pg.134]    [Pg.238]    [Pg.239]    [Pg.239]    [Pg.240]    [Pg.241]    [Pg.132]    [Pg.172]    [Pg.196]    [Pg.708]    [Pg.709]    [Pg.709]    [Pg.709]    [Pg.836]    [Pg.940]    [Pg.940]    [Pg.942]    [Pg.969]    [Pg.709]    [Pg.710]    [Pg.710]    [Pg.710]    [Pg.837]    [Pg.941]   
See also in sourсe #XX -- [ Pg.200 ]




SEARCH



Overload

Overloading

Overloading overload

© 2024 chempedia.info