Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron characteristics, major

Alkali or alkaline-earth salts of both complexes are soluble in water (except for Ba2[Fe(CN)g]) but are insoluble in alcohol. The salts of hexakiscyanoferrate(4—) are yellow and those of hexakiscyanoferrate(3—) are mby red. A large variety of complexes arise when one or more cations of the alkah or alkaline-earth salts is replaced by a complex cation, a representative metal, or a transition metal. Many salts have commercial appHcations, although the majority of industrial production of iron cyanide complexes is of iron blues such as Pmssian Blue, used as pigments (see Pigments, inorganic). Many transition-metal salts of [Fe(CN)g] have characteristic colors. Addition of [Fe(CN)g] to an unknown metal salt solution has been used as a quaUtative test for those transition metals. [Pg.434]

Bacterial activity often plays a major part in determining the corrosion of buried steel. This is particularly so in waterlogged clays and similar soils, where no atmospheric oxygen is present as such. If these soils contain sulphates, e.g. gypsum and the necessary traces of nutrients, corrosion can occur under anaerobic conditions in the presence of sulphate-reducing bacteria. One of the final products is iron sulphide, and the presence of this is characteristic of attack by sulphate-reducing bacteria, which are frequently present (see Section 2.6). [Pg.504]

The individual characteristics and uses of the basic grades of the austenitic irons are given in Table 3.55. The major uses for these materials occur in the handling of fluids in the chemical and petroleum industries and also in the power industry and in many marine applications. The austenitic irons are also used in the food, soap and plastics industries where low corrosion rates are essential in order to avoid contamination of the product. Ni-Resist grades Type 2, 3 or 4 are generally used for such applications but the highly alloyed Type 4 Ni-Resist is preferred where low product contamination is of prime importance. [Pg.610]

Clearly then, in glasses coloured by metal ions, the co-ordination chemistry of the transition metal ion has a major influence on the colour. The other major influence is the oxidation state of the metal ion, since variable valency is another characteristic of the transition metals. All other things being equal, for example, iron in the Fe11 form will give a pale blue colour, whereas Fem gives... [Pg.163]

On the basis of the preceding discussion, it should be obvious that ultratrace elemental analysis can be performed without any major problems by atomic spectroscopy. A major disadvantage with elemental analysis is that it does not provide information on element speciation. Speciation has major significance since it can define whether the element can become bioavailable. For example, complexed iron will be metabolized more readily than unbound iron and the measure of total iron in the sample will not discriminate between the available and nonavailable forms. There are many other similar examples and analytical procedures that must be developed which will enable elemental speciation to be performed. Liquid chromatographic procedures (either ion-exchange, ion-pair, liquid-solid, or liquid-liquid chromatography) are the best methods to speciate samples since they can separate solutes on the basis of a number of parameters. Chromatographic separation can be used as part of the sample preparation step and the column effluent can be monitored with atomic spectroscopy. This mode of operation combines the excellent separation characteristics with the element selectivity of atomic spectroscopy. AAS with a flame as the atom reservoir or AES with an inductively coupled plasma have been used successfully to speciate various ultratrace elements. [Pg.251]

Tab. 4.1 Morphological characteristics of major iron oxide minerals... Tab. 4.1 Morphological characteristics of major iron oxide minerals...
The Mars Pathfinder rover carried an Alpha Proton X-ray Spectrometer (APXS), and the two Mars Exploration Rovers (MER - Spirit and Opportunity) carried Alpha Particle X-ray Spectrometers (also called APXS, but in this case more precise versions of the Pathfinder instrument, though without the ability to monitor protons for light element analyses). These instruments contained radioactive curium sources (Fig. 13.16) whose decay produced a-particles, which irradiated target rocks and soils. The resulting characteristic X-rays provided measurements of major and minor element abundances. The MER rovers also carried Mossbauer spectrometers, which yielded information on iron oxidation state. [Pg.465]

At least three types of proton channel systems are recognized in animal cells. These include the Na+/H+ exchanger, the H+-ATPase, and the HCOj/Cl- exchanger. It is clear that a major part of proton release by some cells in response to transplasma membrane electron transport is by activation of the Na+/H+ exchanger. This is clear from the characteristics of the proton movement elicited and the magnitude of H+ release in relation to electron flow when electron transport is activated. Activation of electron transport can be elicited by addition of di-ferric transferrin to activate the transmembrane NADH oxidase activity or by electron flow to external ferricyanide from internal NADH. Addition of di-ferric transferrin to certain cells, especially pineal cells, elicits a remarkable proton release and internal alkaliniza-tion. The stoichiometry of H+ release to iron reduced is more than 100 to 1 (Sun et... [Pg.176]


See other pages where Iron characteristics, major is mentioned: [Pg.102]    [Pg.471]    [Pg.709]    [Pg.1152]    [Pg.791]    [Pg.384]    [Pg.449]    [Pg.110]    [Pg.569]    [Pg.54]    [Pg.131]    [Pg.330]    [Pg.252]    [Pg.34]    [Pg.497]    [Pg.318]    [Pg.129]    [Pg.103]    [Pg.11]    [Pg.2]    [Pg.753]    [Pg.237]    [Pg.1309]    [Pg.29]    [Pg.298]    [Pg.362]    [Pg.144]    [Pg.1309]    [Pg.423]    [Pg.296]    [Pg.262]    [Pg.360]    [Pg.471]    [Pg.34]    [Pg.310]    [Pg.311]    [Pg.360]    [Pg.24]    [Pg.281]    [Pg.3]    [Pg.346]    [Pg.65]   
See also in sourсe #XX -- [ Pg.12 ]




SEARCH



Iron characteristics

Iron major

© 2024 chempedia.info