Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ions ionic transport

Static electrification may not be a property of the basic stmcture, but of a new surface formed by a monomolecular layer of water (82). All textile fibers at a relative humidity, at which a continuous monomolecular layer is formed, actually do have the same charge density. This is attributed to the absence of ionic transport which caimot occur in a monomolecular layer. At higher moisture levels than required to form a monomolecular layer, ionic conductivity can occur because of excess water molecules and by hydration of the ions. At very low moisture-regain levels, all materials acquire the same charge (83). [Pg.292]

The experimental value for Agl is 1.97 FT cirT1 [16, 3], which indicates that the silver ions in Agl are mobile with nearly a thermal velocity. Considerably higher ionic transport rates are even possible in electrodes, by chemical diffusion under the influence of internal electric fields. For Ag2S at 200 °C, a chemical diffusion coefficient of 0.4cm2s, which is as high as in gases, has been measured... [Pg.533]

In most cases of practically useful ionic conductors one may assume a very large concentration of mobile ionic defects. As a result, the chemical potential of the mobile ions may be regarded as being essentially constant within the material. Thus, any ionic transport in such a material must be predominantly due to the influence of an internal electrostatic potential gradient,... [Pg.544]

The plasma membrane Na+/Ca2+ exchanger is a high-capacity and low affinity ionic transporter that exchanges three Na+ ions for one Ca2+ ion. When intracellular Ca2+ concentrations [Ca2+]i rise and the... [Pg.801]

Various methods are available for determining the solvation number hj and (or) the radius of the primary solvation sheath (1) by comparing the values of the true and apparent ionic transport numbers, (2) by determining the Stokes radii of the ions, or (3) by measuring the compressibility of the solution [the compressibility decreases... [Pg.110]

During electrolysis there is no change in composition of an individual melt close to the electrode surfaces only its quantity (volume) will change. The resulting void space is filled again by flow of the entire liquid melt mass. This flow replaces the diffusional transport of ions customarily associated with aqueous solutions. This has particular consequences for the method used to measure ionic transport numbers ... [Pg.133]

Thus, the ideas above do not suffice for an interpretation of all experimental results. These ideas include the assumption that the ions move in the membrane only under the effect of concentration and potential gradients (diffusion and migration), and that transport of one sort of ions is independent of the transport of other sorts of ions. This transport of ions under the effect of external forces has been named passive ionic transport. [Pg.578]

The energy needed to transport ions across the membrane is obtained by the cell in chemical reactions occurring in it that is, the oxidation of organic substances with oxygen (for more details, see Section 30.2). Every second about 10 to 10 ions are transported across 1 m of membrane area. This process requires 20 to 30% of all energy generated by the cell. It has been calculated that the total power of the ionic pumps in the cells of the brain is about 1 watt. [Pg.579]

In the example just studied, the electrolysis of HC1 solution, the ions that transport the current (H+ and Cl-) are also the ones that are discharged at the electrodes. In other cases, however, the main ionic transporters of current may not be of the same species as the ions that are discharged. An excellent example is the electrolysis of CuS04 solution between platinum electrodes. A one molal CuS04 solution is quite acid so that the positive current transporters are both Cu2+ and H+ ions. The main negative transporter is the S04 ions. The solution contains, however, a small concentration of OH- ions. In order to determine which ions will be discharged at the electrodes, it is necessary to consider standard electrode potentials of the concerned species ... [Pg.680]

In polymer electrolytes (even prevailingly crystalline), most of ions are transported via the mobile amorphous regions. The ion conduction should therefore be related to viscoelastic properties of the polymeric host and described by models analogous to that for ion transport in liquids. These include either the free volume model or the configurational entropy model . The former is based on the assumption that thermal fluctuations of the polymer skeleton open occasionally free volumes into which the ionic (or other) species can migrate. For classical liquid electrolytes, the free volume per molecule, vf, is defined as ... [Pg.140]

Because additives are normally present in low concentration, this parameter is much larger for additives than for the metal ion. Hence, while ionic transport does not place an important limit on deposition rate inside sub-micron trenches, additive diffusion does. Both scale with L2/b so that as L is reduced at constant L/D, D becomes smaller, and additive diffusion becomes less controlling. [Pg.182]

There are three broad categories of materials that have been utilized in this endeavor. In the first, even in fully stoichiometric compounds, the ionic conductivity is high enough to be useful in devices because the cation or anion substructure is mobile and behaves rather like a liquid phase trapped in the solid matrix. A second group have structural features such as open channels that allow easy ion transport. In the third group the ionic conductivity is low and must be increased by the addition of defects, typically impurities. These defects are responsible for the enhancement of ionic transport. [Pg.252]

Figure 6.2 Ionic transport number for oxide ion conductivity in the pyrochlore phases Lu2Ti207, Lu2.096Tii.904O6.952> and Lu2286Tii.7i406.857- [Data adapted from A. V. Shlyakhtina, J. C. C. Abrantes, A. V. Levchenko, A. V. Knot ko, O. K. Karyagina, and L. G. Shcherbakova, Solid State Ionics, 177, 1149-1155 (2006).]... Figure 6.2 Ionic transport number for oxide ion conductivity in the pyrochlore phases Lu2Ti207, Lu2.096Tii.904O6.952> and Lu2286Tii.7i406.857- [Data adapted from A. V. Shlyakhtina, J. C. C. Abrantes, A. V. Levchenko, A. V. Knot ko, O. K. Karyagina, and L. G. Shcherbakova, Solid State Ionics, 177, 1149-1155 (2006).]...
Shown in Figure 1.1 is the oxygen ion conductivity of selected oxides. Among these oxides, only a few materials have been developed as SOFC electrolytes due to numerous requirements of the electrolyte components. These requirements include fast ionic transport, negligible electronic conduction, and thermodynamic stability over a wide range of temperature and oxygen partial pressure. In addition, they must... [Pg.2]

But the entire conception here is that of equilibrium solvation of the transition state by the Debye ionic atmosphere, and closer inspection [51] indicates that this assumption can hardly be justified indeed, time scale considerations reveal that it will nearly always be violated. The characteristic time for the system to cross the reaction barrier is cot, 0.1 ps say. On the other hand, the time required for equilibration of the atmosphere is something like the time for an ion to diffuse over the atmosphere dimension, the Debye length K- this time is = 1 ns for a salt concentration C= 0.1M and only drops to lOps for C 1M. Thus the ionic atmosphere is perforce out of equilibrium during the barrier passage, and in analogy with ionic transport problems, there should be an ionic atmosphere friction operative on the reaction coordinate which can influence the reaction rate. [Pg.251]

In electrodes the electronic species typically have the highest transference number. The motion of the most mobile ions generally determines the rate of the discharging and charging processes. But the ionic transport rate may be largely influenced by many orders of magnitude by the interaction with the electrons and holes. Eqn (8.23) reads in this specific case... [Pg.208]

A battery is a transducer that converts chemical energy into electrical energy and vice versa. It contains an anode, a cathode, and an electrolyte. The anode, in the case of a lithium battery, is the source of lithium ions. The cathode is the sink for the lithium ions and is chosen to optimize a number of parameters, discussed below. The electrolyte provides for the separation of ionic transport and electronic transport, and in a perfect battery the lithium ion transport number will be unity in the electrolyte. The cell potential is determined by the difference between the chemical potential of the lithium in the anode and cathode, AG = —EF. [Pg.32]

In lithium-based cells, the essential function of battery separator is to prevent electronic contact, while enabling ionic transport between the positive and negative electrodes. It should be usable on highspeed winding machines and possess good shutdown properties. The most commonly used separators for primary lithium batteries are microporous polypropylene membranes. Microporous polyethylene and laminates of polypropylene and polyethylene are widely used in lithium-ion batteries. These materials are chemically and electrochemically stable in secondary lithium batteries. [Pg.188]

Ionic Transport, a. Conductivity The specific conductance of the SPS (Na+ form) membranes is shown in Fig. 8, whose data are summarized in Table II, including values of an apparent energy of activation. An exponential increase in ionic conductance together with a decrease in an apparent energy of activation may be related to a decrease in a "jump" distance between ion-exchange sites as a function of lEC. [Pg.360]

Data for the electrical conductance of annealed samples shows that ionic transport is more restricted in comparison with those which are nonannealed [Table IV). Since the total number of ion-exchange sites is unaffected by the annealing process (cf. experimental) we may assume that the site to site distance has increased. [Pg.363]


See other pages where Ions ionic transport is mentioned: [Pg.404]    [Pg.404]    [Pg.201]    [Pg.201]    [Pg.300]    [Pg.74]    [Pg.527]    [Pg.355]    [Pg.430]    [Pg.579]    [Pg.582]    [Pg.631]    [Pg.20]    [Pg.318]    [Pg.251]    [Pg.62]    [Pg.140]    [Pg.7]    [Pg.166]    [Pg.383]    [Pg.224]    [Pg.297]    [Pg.316]    [Pg.360]    [Pg.190]    [Pg.309]    [Pg.554]    [Pg.566]    [Pg.280]    [Pg.296]    [Pg.103]   
See also in sourсe #XX -- [ Pg.251 , Pg.252 ]




SEARCH



Ion transporters

© 2024 chempedia.info