Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic surfactants cationic

To test the generality of their findings, the authors studied the force measurements using polymers of different molecular weights, and different ionic surfactants (cationic, anionic). In all those cases, they observed the same phenomena [74,75]. [Pg.79]

Petrochemical surfactants are mainly derived from ethylene, propylene, butylenes, benzene, and also naphthalene as building blocks [46]. The most important emulsifiers for emulsion polymerization are anionic and non-ionic surfactants. Cationic and amphoteric surfactants are only used in special cases and are of minor importance as emulsifiers for polymerization. [Pg.105]

Physical and ionic adsorption may be either monolayer or multilayer (12). Capillary stmctures in which the diameters of the capillaries are small, ie, one to two molecular diameters, exhibit a marked hysteresis effect on desorption. Sorbed surfactant solutes do not necessarily cover ah. of a sohd iaterface and their presence does not preclude adsorption of solvent molecules. The strength of surfactant sorption generally foUows the order cationic > anionic > nonionic. Surfaces to which this rule apphes include metals, glass, plastics, textiles (13), paper, and many minerals. The pH is an important modifying factor in the adsorption of all ionic surfactants but especially for amphoteric surfactants which are least soluble at their isoelectric point. The speed and degree of adsorption are increased by the presence of dissolved inorganic salts in surfactant solutions (14). [Pg.236]

The aim of the present work was optimization of synthesis of SG -polymeric cation exchanger composite films by sol-gel technology in the presence of non-ionic surfactants and their application for detenuination of Zn (II) as phenanthrolinate (Phen) complex. [Pg.317]

SG sols were synthesized by hydrolysis of tetraethyloxysilane in the presence of polyelectrolyte and surfactant. Poly (vinylsulfonic acid) (PVSA) or poly (styrenesulfonic acid) (PSSA) were used as cation exchangers, Tween-20 or Triton X-100 were used as non- ionic surfactants. Obtained sol was dropped onto the surface of glass slide and dried over night. Template extraction from the composite film was performed in water- ethanol medium. The ion-exchange properties of the films were studied spectrophotometrically using adsorption of cationic dye Rhodamine 6G or Fe(Phen) and potentiometrically by sorption of protons. [Pg.317]

The bioluminescence spectrum of P. stipticus and the fluorescence and chemiluminescence spectra of PM are shown in Fig. 9.7. The fluorescence emission maximum of PM-2 (525 nm) is very close to the bioluminescence emission maximum (530 nm), but the chemiluminescence emission maximum in the presence of a cationic surfactant CTAB (480 nm) differs significantly. However, upon replacing the CTAB with the zwitter-ionic surfactant SB3-12 (3-dodecyldimethylammonio-propanesulfonate), the chemiluminescence spectrum splits into two peaks, 493 nm and 530 nm, of which the latter peak coincides with the emission maximum of the bioluminescence. When PM-1 is heated at 90°C for 3 hr in water containing 10% methanol, about 50% of PM-1 is converted to a new compound that can be isolated by HPLC the chemiluminescence spectrum of this compound in the presence of SB3-12 (curve 5, Fig. 9.7) is practically identical with the bioluminescence spectrum. [Pg.286]

The solubility of numerous ionic surfactants in water is strongly reduced in the presence of divalent cations. Stability in hard water is thus an important fact for surfactants used as detergents. Their stability can be measured as the amount of divalent cations at which the formation of a poorly soluble surfactant salt leads to permanent turbidity. The values given in the literature can only be... [Pg.480]

In Fig. 2.58 (Hetsroni et al. 2001b) the dependencies of the surface tension of the various surfactants a divided on the surface tension of water ow are shown. One can see that beginning from some particular value of surfactant concentration (which depends on the kind of surfactant), the value of the relative surface tension almost does not change with further increase in the surfactant concentration. It should be emphasized that the variation of the surface tension as a function of the solution concentration shows the same behavior for anionic, non-ionic, and cationic surfactants at various temperatures. [Pg.70]

As alternatives to amphiphilic betaines, a wide range of cationic, anionic, and non-ionic surfactants including environmentally benign sugar soaps have been successfully used as colloidal stabilizers [201]. Electrochemical reduction of the metal salts provides a very clean access to water soluble nanometal colloids [192]. [Pg.29]

NMR measurements are very useful to understand the properties of the stabilizing reagents of metal nanoparticles. Author s group reported the structure of stabilization of non-ionic and cationic surfactants on platinum nanoparticles [22] and that of ternary amines on rhodium nanoparticles [23]. Such information is considerably important for applications of nanoparticles such as... [Pg.455]

Gutfelt et al. (1997) have evaluated various ME formulations as reaction media for synthesis of decyl sulphonate from decylbromide and sodium sulphite. The reaction rate was fast both in water-in-oil and in bicontinuous ME based on non-ionic surfactants. A comparison was made with this reaction being conducted in a two-phase. system with quats as phase-transfer catalyst but was found to be much less efficient. However, when two other nucleophiles, NaCN and NaNOj, were used the PTC method was almost as efficient as the ME media. It seems that in the case of decyl sulphonate there is a strong ion pair formation between the product and the PTC. The rate in the ME media could be further increased by addition of a small amount of a cationic surfactant. [Pg.150]

Surfactants employed for w/o-ME formation, listed in Table 1, are more lipophilic than those employed in aqueous systems, e.g., for micelles or oil-in-water emulsions, having a hydrophilic-lipophilic balance (HLB) value of around 8-11 [4-40]. The most commonly employed surfactant for w/o-ME formation is Aerosol-OT, or AOT [sodium bis(2-ethylhexyl) sulfosuccinate], containing an anionic sulfonate headgroup and two hydrocarbon tails. Common cationic surfactants, such as cetyl trimethyl ammonium bromide (CTAB) and trioctylmethyl ammonium bromide (TOMAC), have also fulfilled this purpose however, cosurfactants (e.g., fatty alcohols, such as 1-butanol or 1-octanol) must be added for a monophasic w/o-ME (Winsor IV) system to occur. Nonionic and mixed ionic-nonionic surfactant systems have received a great deal of attention recently because they are more biocompatible and they promote less inactivation of biomolecules compared to ionic surfactants. Surfactants with two or more hydrophobic tail groups of different lengths frequently form w/o-MEs more readily than one-tailed surfactants without the requirement of cosurfactant, perhaps because of their wedge-shaped molecular structure [17,41]. [Pg.472]

Ong et al. [134] found that several hydrophilic anionic, non ionic, or cationic surfactants can alleviate the deleterious effect of magnesium stearate over-mixing on dissolution from capsules when added with the lubricant in a ratio as low as 1 5 (w/w). These successful surfactants were sodium A-lauroyl sarcosinate, sodium stearoyl-2-lactylate, sodium stearate, polox-amer 188, cetylpyridinium chloride, and sodium lauryl sulfate. The lipophilic surfactant glyceryl monostearate did not alleviate the magnesium stearate mixing effect. A reduction in thier particle size was shown to enhance effectiveness, particularly in the case of surfactants with low solubility and slow dissolution rate. [Pg.368]

Sonochemical reduction processes of Pt(IV) ions in the presence of anionic, cationic or non-ionic surfactants was investigated by Mizukoshi et al. [38]. During the processes, the color of the aqueous solution containing H2PtCl6 and surfactants... [Pg.155]

Some of the reports are as follows. Mizukoshi et al. [31] reported ultrasound assisted reduction processes of Pt(IV) ions in the presence of anionic, cationic and non-ionic surfactant. They found that radicals formed from the reaction of the surfactants with primary radicals sonolysis of water and direct thermal decomposition of surfactants during collapsing of cavities contribute to reduction of metal ions. Fujimoto et al. [32] reported metal and alloy nanoparticles of Au, Pd and ft, and Mn02 prepared by reduction method in presence of surfactant and sonication environment. They found that surfactant shows stabilization of metal particles and has impact on narrow particle size distribution during sonication process. Abbas et al. [33] carried out the effects of different operational parameters in sodium chloride sonocrystallisation, namely temperature, ultrasonic power and concentration sodium. They found that the sonocrystallization is effective method for preparation of small NaCl crystals for pharmaceutical aerosol preparation. The crystal growth then occurs in supersaturated solution. Mersmann et al. (2001) [21] and Guo et al. [34] reported that the relative supersaturation in reactive crystallization is decisive for the crystal size and depends on the following factors. [Pg.176]

Many other products can be used as softeners but are less important commercially because of greater cost and/or inferior properties. Examples are anionic surfactants such as long-chain (C16-C22) alkyl sulphates, sulphonates, sulphosuccinates and soaps. These have rather low substantivity and are easily washed out. Nonionic types of limited substantivity and durability, usually applied by padding, include polyethoxylated derivatives of long-chain alcohols, acids, glycerides, oils and waxes. They are useful where ionic surfactants would pose compatibility problems and they exhibit useful antistatic properties, but they are more frequently used as lubricants in combination with other softeners, particularly the cationics. [Pg.263]

Lee, G.W.J. and Tadros, Th.F. (1982) Formation and stability of emulsions produced by dilution of emulsifiable concentrates. Part I. An investigation of the dispersion on dilution of emulsifiable concentrates containing cationic and non-ionic surfactants. Colloids Surf,... [Pg.171]

Crisp et al. [212] has described a method for the determination of non-ionic detergent concentrations between 0.05 and 2 mg/1 in fresh, estuarine, and seawater based on solvent extraction of the detergent-potassium tetrathiocyana-tozincate (II) complex followed by determination of extracted zinc by atomic AAS. A method is described for the determination of non-ionic surfactants in the concentration range 0.05-2 mg/1. Surfactant molecules are extracted into 1,2-dichlorobenzene as a neutral adduct with potassium tetrathiocyanatozin-cate (II), and the determination is completed by AAS. With a 150 ml water sample the limit of detection is 0.03 mg/1 (as Triton X-100). The method is relatively free from interference by anionic surfactants the presence of up to 5 mg/1 of anionic surfactant introduces an error of no more than 0.07 mg/1 (as Triton X-100) in the apparent non-ionic surfactant concentration. The performance of this method in the presence of anionic surfactants is of special importance, since most natural samples which contain non-ionic surfactants also contain anionic surfactants. Soaps, such as sodium stearate, do not interfere with the recovery of Triton X-100 (1 mg/1) when present at the same concentration (i.e., mg/1). Cationic surfactants, however, form extractable nonassociation compounds with the tetrathiocyanatozincate ion and interfere with the method. [Pg.403]

The electrostatic and steric effects can be combined to stabilize nanoparticles in solution. This type of stabilization is generally provided by means of ionic surfactants such as alkylammonium cations (Scheme 9.3). These compounds bear both a polar head group which is able to generate an electrical double layer, and a lipophilic side chain which is able to provide steric repulsion [14, 15]. [Pg.219]

Both urban and industrial wastewater often contains high concentrations of surfactants. Cationic (like alkylbenzene sulphonates) and non-ionic surfactants (like alcohol ethoxylates) are among the most-used surfactants and are discharged into sewers in widely varying concentrations. Two on-line methods have been designed for the monitoring of cationic surfactants with UV spectrophotometry [46] and non-ionic surfactants by on-line titration [47]. The detection limits are around 10 mg L. ... [Pg.262]

The surface active agents (surfactants) may be cationic, anionic or non-ionic. Surfactants commonly used are cetyltrimethyl ammonium bromide (CTABr), sodium lauryl sulphate (NaLS) and triton-X, etc. The surfactants help to lower the surface tension at the monomer-water interface and also facilitate emulsification of the monomer in water. Because of their low solubility surfactants get fully dissolved or molecularly dispersed only at low concentrations and at higher concentrations micelles are formed. The highest concentration where in all the molecules are in dispersed state is known as critical micelle concentration (CMC). The CMC values of some surfactants are listed in table below. [Pg.16]

The determination of bismuth activity as an indicator of non-ionic surfactants also suffers from interference in environmental samples. Substance group specific methods also failed to detect different types of fluorine-containing anionic, cationic and non-ionic surfactants. Already marginal modifications in the precursor surfactant due to primary degradation or advanced metabolisation implicated their lack of detection [45]. [Pg.63]

Numerous applications have been shown to exist that overcome the general problems of lack of volatility and instability at higher temperatures that principally hamper direct analysis of surfactants by GC methods. Thus, a whole suite of derivatisation techniques are available for the gas chromatographist to successfully determine anionic, non-ionic and cationic surfactants in the environment. This enables the analyst to combine the high-resolution chromatography that capillary GC offers with sophisticated detection methods such as mass spectrometry. In particular, for the further elucidation of the complex mixtures, which is typical for the composition of many of the commercial surfactant formulations, the high resolving power of GC will be necessary. [Pg.100]

Equidistant or clustered signals, characteristic of some anionic, nonionic or cationic surfactants (cf. Fig. 2.5.1(a) and (b). So the presence of non-ionic surfactants of alkylpolyglycolether (alcohol ethoxylate) type (AE) (structural formula C H2 i i-0-(CH2-CH2-0)x-H) could be confirmed in the formulation (Fig. 2.5.1(a)) applying APCI-FIA-MS in positive mode. AE compounds with high probability could also be assumed in the heavily loaded environmental sample because of the patterns of A m/z 44 equally spaced ammonium adduct ions ([M + NH4]+) shown in its FIA-MS spectrum in Fig. 2.5.1(b). [Pg.158]

These observations obtained from the application of different API techniques are determinative for qualitative and quantitative FIA results in the analysis of non-ionic and ionic surfactants. Therefore, both ionic surfactant types, anionic and cationic surfactant blends, besides a non-ionic AE surfactant blend were examined, recording their FIA-MS and MS-MS spectra from the blends before the spectra were generated from the mixture of all blends. The results, which show considerable variation, will be presented and discussed as follows. [Pg.163]


See other pages where Ionic surfactants cationic is mentioned: [Pg.53]    [Pg.252]    [Pg.891]    [Pg.53]    [Pg.252]    [Pg.891]    [Pg.191]    [Pg.199]    [Pg.206]    [Pg.380]    [Pg.384]    [Pg.154]    [Pg.146]    [Pg.220]    [Pg.294]    [Pg.455]    [Pg.411]    [Pg.480]    [Pg.274]    [Pg.370]    [Pg.248]    [Pg.33]    [Pg.425]    [Pg.34]    [Pg.224]    [Pg.279]    [Pg.280]    [Pg.144]    [Pg.139]   
See also in sourсe #XX -- [ Pg.54 , Pg.228 ]

See also in sourсe #XX -- [ Pg.54 , Pg.228 ]

See also in sourсe #XX -- [ Pg.21 , Pg.22 , Pg.23 , Pg.24 , Pg.25 , Pg.26 , Pg.27 ]




SEARCH



Ionic cationic

Ionic surfactants

© 2024 chempedia.info