Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic retention

It has been considered that HILIC stationary phases absorb or imbibe water and that partition of analytes occurs between this layer of water and water in the bulk mobile phase. This mechanism occurs alongside ionic retention, as many of the commonly used HILIC stationary phases (as is the case with bare silica) have ion-exchange properties [34]. Partitioning into the water layer may explain the retention... [Pg.345]

The model for ionic retention and ion-pair chromatography that are discussed in Sections 15.2 and 15.3 has been tested and applied to a number of different systems and works very well in most of the cases. From colloid and surface chemistry is known that the model has its limitations, and under certain chromatographic conditions, the presented model will not be valid. The limitations of the model when applied to reversed-phase chromatography of ions still need to be found. Some are self-evident, such as if the pairing-ion concentration is close or above the CMC or when the retention factor is very low so that the accumulation in the double layer is important in comparison to the adsorption, see Ref. [7] for a discussion concerning the accumulation in the double layer. [Pg.432]

Eactors that could potentiaHy affect microbial retention include filter type, eg, stmcture, base polymer, surface modification chemistry, pore size distribution, and thickness fluid components, eg, formulation, surfactants, and additives sterilization conditions, eg, temperature, pressure, and time fluid properties, eg, pH, viscosity, osmolarity, and ionic strength and process conditions, eg, temperature, pressure differential, flow rate, and time. [Pg.140]

Water. Water is often added to processed meat products for a variety of reasons. It is an important carrier of various ionic components that are added to processed meat products. The retention of water during further processing of meat is necessary to obtain a product that is juicy and has higher yields. The amount of water added during the preparation of processed meat products depends on the final properties desired. Water may be added to a meat product as a salt brine or as ice during the comminution step of sausage preparation. [Pg.32]

Maleic acid and fumaric acid can also be, and are often, incorporated in alkyd resins in the form of the Diels-Alder adduct of rosin. The adducts are tribasic acids which provide pendent carboxyl groups in the resin molecules, which can be saponified to give ionic, and, in turn, water-soluble characteristics to the resin. However, the resultant alkyds often have poorer color retention, toughness, gloss retention, and exterior durabiUty. [Pg.33]

Retention and stereoselectivity on the BSA columns can be changed by the use of additives to the aqueous mobile phase (30). Hydrophobic compounds generally are highly retained on the BSA, and a mobile-phase modifier such as 1-propanol can be added to obtain reasonable retention times. The retention and optical resolution of charged solutes such as carboxyUc acids or amines can be controlled by pH and ionic strength of the mobile phase. [Pg.100]

Second, most membrane materials adsorb proteins. Worse, the adsorption is membrane-material specific and is dependent on concentration, pH, ionic strength, temperature, and so on. Adsorption has two consequences it changes the membrane pore size because solutes are adsorbed near and in membrane pores and it removes protein from the permeate by adsorption in addition to that removed by sieving. Porter (op. cit., p. 160) gives an illustrative table for adsorption of Cytochrome C on materials used for UF membranes, with values ranging from 1 to 25 percent. Because of the adsorption effects, membranes are characterized only when clean. Fouling has a dramatic effect on membrane retention, as is explained in its own section below. [Pg.2039]

Figure 6. Graph of Retention Volume of a Series of Ions against Their Ionic Volume... Figure 6. Graph of Retention Volume of a Series of Ions against Their Ionic Volume...
Molecular interactions are the result of intermolecular forces which are all electrical in nature. It is possible that other forces may be present, such as gravitational and magnetic forces, but these are many orders of magnitude weaker than the electrical forces and play little or no part in solute retention. It must be emphasized that there are three, and only three, different basic types of intermolecular forces, dispersion forces, polar forces and ionic forces. All molecular interactions must be composites of these three basic molecular forces although, individually, they can vary widely in strength. In some instances, different terms have been introduced to describe one particular force which is based not on the type of force but on the strength of the force. Fundamentally, however, there are only three basic types of molecular force. [Pg.63]

In theory, SEC of proteins depends only on their molecular size. Sometimes the size of a protein varies with the ionic strength of the buffer (5,6). The concentration of salt not only affects the conformation of the protein, but can also influence the chromatographic separation itself. Additional retention... [Pg.222]

In a series of papers published throughout the 1980s, Colin Poole and his co-workers investigated the solvation properties of a wide range of alkylammonium and, to a lesser extent, phosphonium salts. Parameters such as McReynolds phase constants were calculated by using the ionic liquids as stationary phases for gas chromatography and analysis of the retention of a variety of probe compounds. However, these analyses were found to be unsatisfactory and were abandoned in favour of an analysis that used Abraham s solvation parameter model [5]. [Pg.94]

Naphthalenedisulfonate-acetonitrile as the only mobile phase with a silica column coated with a crosslinked aminofluorocarbon polymer has proven to be an effective combination for the separation of aliphatic anionic surfactants. Indirect conductivity and photometric detection modes are used to monitor these analytes. The retention of these surfactants is found to depend on both the ionic strength and the organic solvent content of the mobile phase. The mechanism of retention is considered to be a combination of both reverse phase and ion exchange processes. Selective separation of both alkanesulfonates and... [Pg.168]

Returning to the molecular force concept, in any particular distribution system it is rare that only one type of interaction is present and if this occurs, it will certainly be dispersive in nature. Polar interactions are always accompanied by dispersive interactions and ionic interactions will, in all probability, be accompanied by both polar and dispersive interactions. However, as shown by equation (11), it is not merely the magnitude of the interacting forces between the solute and the stationary phase that will control the extent of retention, but also the amount of stationary phase present in the system and its accessibility to the solutes. This leads to the next method of retention control, and that is the volume of stationary phase available to the solute. [Pg.33]

It was explained in the previous chapter that solute retention and, consequently, solute selectivity is accomplished in an LC column by exploiting three basic and different types of molecular interactions in the stationary phase those interactions were described as ionic, polar and dispersive. [Pg.51]

Complete resolution was not achieved due to the carryover of interfering substances which frequently occurs when separating the components of biological samples. The column carried a reverse phase, but as the mobile phase contained low concentrations of lauryl sulfate, some would have adsorbed on the surface of the stationary phase and significantly modified its interacting properties. The retention mechanism is likely to have involved both ionic interactions with the adsorbed ion exchanger together with dispersive interactions with any exposed areas of the reverse phase. [Pg.232]

Interactive LC systems are those where solute retention is predominantly controlled by the relative strengths of the molecular interactions between solute molecules with those of the two phases. In such systems, exclusion and entropically driven interactions will be minor contributions to retention. The three basically different types of molecular interaction, dispersive, polar and ionic give rise to three subgroups, each subgroup representing a separation where one specific type of interaction dominates in the stationary phase and thus governs solute retention. The subgroups are as follows ... [Pg.296]

The mobile phase was an aqueous solution containing 50 mM sodium phosphate and 150 mM sodium chloride at a pH 7.0. Although ionic interactions are likely to constitute the major contribution to retention and selectivity, there would also be significant polar interactions and some dispersive interactions between the aromatic nuclei of the solutes and the aromatic nuclei and the aliphatic side chains of resin respectively. Under these circumstances, without considerable experimental work, it is impossible to identify the relative magnitude of the different contributions from each type of interaction. [Pg.310]

Aqueous solutions are not suitable solvents for esterifications and transesterifications, and these reactions are carried out in organic solvents of low polarity [9-12]. However, enzymes are surrounded by a hydration shell or bound water that is required for the retention of structure and catalytic activity [13]. Polar hydrophilic solvents such as DMF, DMSO, acetone, and alcohols (log P<0, where P is the partition coefficient between octanol and water) are incompatible and lead to rapid denaturation. Common solvents for esterifications and transesterifications include alkanes (hexane/log P=3.5), aromatics (toluene/2.5, benzene/2), haloalkanes (CHCI3/2, CH2CI2/I.4), and ethers (diisopropyl ether/1.9, terf-butylmethyl ether/ 0.94, diethyl ether/0.85). Exceptionally stable enzymes such as Candida antarctica lipase B (CAL-B) have been used in more polar solvents (tetrahydrofuran/0.49, acetonitrile/—0.33). Room-temperature ionic liquids [14—17] and supercritical fluids [18] are also good media for a wide range of biotransformations. [Pg.134]


See other pages where Ionic retention is mentioned: [Pg.314]    [Pg.347]    [Pg.86]    [Pg.314]    [Pg.347]    [Pg.86]    [Pg.592]    [Pg.140]    [Pg.141]    [Pg.319]    [Pg.482]    [Pg.296]    [Pg.111]    [Pg.2035]    [Pg.39]    [Pg.70]    [Pg.83]    [Pg.157]    [Pg.41]    [Pg.223]    [Pg.226]    [Pg.239]    [Pg.982]    [Pg.162]    [Pg.34]    [Pg.86]    [Pg.235]    [Pg.357]    [Pg.1059]    [Pg.168]    [Pg.79]    [Pg.81]    [Pg.90]    [Pg.281]    [Pg.311]    [Pg.75]   
See also in sourсe #XX -- [ Pg.56 , Pg.198 ]




SEARCH



© 2024 chempedia.info