Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ion uptake

Further progress may derive from a more accurate definition of the chemical and physical properties of the humic substances present at the rhizosphere and how they interact with the root-cell apoplast and the plasma membrane. An interaction with the plasma membrane H -ATPase has already been observed however this master enzyme may not be the sole molecular target of humic compounds. Both lipids and proteins (e.g., carriers) could be involved in the regulation of ion uptake. It therefore seems necessary to investigate the action of humic compounds with molecular approaches in order to understand the regulatory aspects of the process and therefore estimate the importance of these molecules as modulators of the root-soil interaction. [Pg.152]

R. J. Haynes, Active ion uptake and maintenance of cation-anion balance a critical examination of their role in regulating rhizosphere pH. Plant Soil 726 247 (1990). [Pg.188]

In experiments with lowland rice Oiyzci saliva L.) it was found that roots quickly exhausted available sources of P and sub.sequently exploited the acid-soluble pool with small amounts deriving from the alkaline soluble pool (18). More recalcitrant forms of P were not utilized. The zone of net P depletion was 4-6 mm wide and showed accumulation in some P pools giving rather complex concentration profiles in the rhizosphere. Several mechanisms for P solubilization could be invoked in a conceptual model to describe this behavior. However using a mathematical model with independently measured parameters (19), it was shown that it could be accounted for solely by root-induced acidification. The acidification resulted from H" produced during the oxidation of Fe by Oi released from roots into the anaerobic rhizosphere as well as from cation/anion imbalances in ion uptake (18). Rice was shown to depend on root-induced acidification for more than 80% of its P uptake. [Pg.335]

We recently synthesized several reasonably surface-active crown-ether-based ionophores. This type of ionophore in fact gave Nernstian slopes for corresponding primary ions with its ionophore of one order or less concentrations than the lowest allowable concentrations for Nernstian slopes with conventional counterpart ionophores. Furthermore, the detection limit was relatively improved with increased offset potentials due to the efficient and increased primary ion uptake into the vicinity of the membrane interface by surfactant ionophores selectively located there. These results were again well explained by the derived model essentially based on the Gouy-Chapman theory. Just like other interfacial phenomena, the surface and bulk phase of the ionophore incorporated liquid membrane may naturally be speculated to be more or less different. The SHG results presented here is one of strong evidence indicating that this is in fact true rather than speculation. [Pg.469]

Although there is no doubt as to the importance of mycorrhizae in nutrient absorption, reviews on ion uptake have generally not considered it. Hatling et al. (143) made this same point more than 10 years ago. In addition, although phenolic acids inhibit phosphate (144, 145) and potassium (146) uptake, no work has examined the effects of these compounds on nutrient absorption of mycorrhizal associations. Since soil microorganisms produce the bulk of the volatile compounds emitted from soil, which are known to inhibit or stimulate fungal development (147-148), this group of compounds from microbial sources should receive more attention. [Pg.313]

Less complex techniques have been reported to be useful to study the acidic and alkaline treatment processes of biosorbents and the role of carboxyl and carboxylate groups in metal adsorption. Rakhshaee and coworkers101 used potentiometric titration curves to assess the content of such groups in L. minor biomass treated with NaOH and HC1. The results showed an increase (up to 25%) in the adsorption of Hg(II), Cr(III), Cr(VI), and Cu(II) with NaOH-treated biomass as a consequence of an increase of -COO- groups (0.92-2.42 mmol/g). On the contrary, the -COOH groups increase observed (1.50-2.41 mmol/g) due to the acidic treatment led to a decrease in the metal ions uptake (up to 33%) despite activation by the chloride salts. [Pg.399]

Figure 12.2 Copper chaperone function, (a) Copper homeostasis in Enterococcus hirae is affected by the proteins encoded by the cop operon. CopA, Cu1+-import ATPase CopB, Cu1+-export ATPase CopY, Cu1+-responsive repressor copZ, chaperone for Cu1+ delivery to CopY. (b) The CTR family of proteins transports copper into yeast cells. Atxlp delivers copper to the CPx-type ATPases located in the post Golgi apparatus for the maturation of Fet3p. (c) Coxl7p delivers copper to the mitochondrial intermembrane space for incorporation into cytochrome c oxidase (CCO). (d) hCTR, a human homologue of CTR, mediates copper-ion uptake into human cells. CCS delivers copper to cytoplasmic Cu/Zn superoxide dismutase (SOD1). Abbreviations IMM, inner mitochondrial membrane OMM, outer mitochondrial membrane PM, plasma membrane PGV, post Golgi vessel. Reprinted from Harrison et al., 2000. Copyright (2000), with permission from Elsevier Science. Figure 12.2 Copper chaperone function, (a) Copper homeostasis in Enterococcus hirae is affected by the proteins encoded by the cop operon. CopA, Cu1+-import ATPase CopB, Cu1+-export ATPase CopY, Cu1+-responsive repressor copZ, chaperone for Cu1+ delivery to CopY. (b) The CTR family of proteins transports copper into yeast cells. Atxlp delivers copper to the CPx-type ATPases located in the post Golgi apparatus for the maturation of Fet3p. (c) Coxl7p delivers copper to the mitochondrial intermembrane space for incorporation into cytochrome c oxidase (CCO). (d) hCTR, a human homologue of CTR, mediates copper-ion uptake into human cells. CCS delivers copper to cytoplasmic Cu/Zn superoxide dismutase (SOD1). Abbreviations IMM, inner mitochondrial membrane OMM, outer mitochondrial membrane PM, plasma membrane PGV, post Golgi vessel. Reprinted from Harrison et al., 2000. Copyright (2000), with permission from Elsevier Science.
Several different changes in mitochondria occur during apoptosis. These include a change in membrane potential (usually depolarization), increased production of reactive oxygen species, potassium channel activation, calcium ion uptake, increased membrane permeability and release of cytochrome c and apoptosis inducing factor (AIF) [25]. Increased permeability of the mitochondrial membranes is a pivotal event in apoptosis and appears to result from the formation of pores in the membrane the proteins that form such permeability transition pores (PTP) may include a voltage-dependent anion channel (VDAC), the adenine nucleotide translocator, cyclophilin D, the peripheral benzodiazepine receptor, hexokinase and... [Pg.610]

Bouldin DR. 1989. A multiple ion uptake model. Journal of Soil Science 40 309-319. [Pg.261]

Glass ADM. 1973. Influence of phenolic acids on ion uptake. J. Inhibition of phosphate uptake. Plant Physiology 51 1037-1041. [Pg.266]

Light increases the concentration of a specific Ca " ion transport protein in the enterocytes of small intestine to increase ion uptake. This increases the Ca " ion concentration in the plasma which is required for mineralisation of bone. A deficiency of the vitamin/hormone results in osteomalacia (i.e. a deficiency of mineral in the bone), also known as rickets in children. The growth of the skeleton and the role of vitamin D is discussed in Appendix 15.2. [Pg.343]

A sarcoplasmic reticulum protein, known as phospho-lambam, phosphorylation of which increases the activity of the Ca ion uptake process in the reticulum and hence the concentration of Ca ions in the cytoplasm decreases more rapidly. This results in a decrease in the relaxation time of the muscle and hence an increase in heart rate. [Pg.525]

We seek to determine an effective fixed-charge density which influences ion uptake and transport. This may be different from an analytical determination of total carboxyl content because some groups may not be in swollen regions of the polymer and so may not... [Pg.101]

Carrano CJ, Thieken A, Winkelmann G (1996) Specificity and Mechanism of Rhizoferrin-Mediated Metal Ion Uptake. BioMetals 9 185... [Pg.57]

The addition of boron to boron-deficient plants induces rapid changes in membrane function that cannot be explained by the role of boron in cell walls described above. Although found in membrane fractions at much lower levels than in cell walls, boron is known to influence ion uptake. For example, uptake of phosphorus and potassium by the roots of various plant species, such as maize and sunflowers, is inhibited by boron deficiency. Uptake of these ions returns to normal within one hour after boron is restored [62]. [Pg.22]

The role of aspartic acid and glutamic acid was investigated in BMP (Beefy Meaty peptide, Lys-Gly-Asp-Glu-Glu-Ser-Leu-Ala) isolated from enzymatic digests of beef soup. The taste of BMP was affected by the sequence of acidic fragment. Sodium ion uptake of acidic dipeptides and their taste, when mixed with sodium ion, were dependent on the component and/or sequence of dipeptides containing acicHc amino acids. [Pg.138]

Ion removal by solids could involve more phenomena, as for example in inorganic natural materials where ion uptake is attributed to ion exchange and adsorption processes or even to internal precipitation mechanisms (Inglezakis et al., 2004). [Pg.34]

Are the mechanisms described here applicable to cells operating in nonaque-ous environments It is conceivable that the sequence described by Eqs. (12)-( 14) occurs under certain conditions. The more complex sequence involving coupled electron and cation transfer probably does not. Although Li+ (the electrolyte cation most often used in Gratzel-type cells) is known to intercalate into high-area metal oxide semiconductors [49,90,108-111], the rate is probably too slow to be coupled to injection and back ET in the same way that aqueous proton uptake and release are coupled to these processes. The ability to use water itself as a proton source means that solution-phase diffusional limitations on proton uptake are absent. Alkali metal ion uptake from nonaqueous solutions, on the other hand, clearly is subject to diffusional limitations. [Pg.117]

That there may be metal ion uptake in the interlayer region is consistent with the above crystal structure experimental confirmation of this process is provided by the work of Wadsley (12) and Buser et al. (2). However, these and other workers did not isolate the role of pH in such... [Pg.85]


See other pages where Ion uptake is mentioned: [Pg.186]    [Pg.45]    [Pg.84]    [Pg.239]    [Pg.119]    [Pg.368]    [Pg.180]    [Pg.449]    [Pg.185]    [Pg.926]    [Pg.382]    [Pg.260]    [Pg.345]    [Pg.510]    [Pg.173]    [Pg.118]    [Pg.15]    [Pg.216]    [Pg.523]    [Pg.23]    [Pg.310]    [Pg.772]    [Pg.52]    [Pg.27]    [Pg.726]    [Pg.197]    [Pg.926]    [Pg.255]    [Pg.365]    [Pg.457]    [Pg.1485]    [Pg.411]   
See also in sourсe #XX -- [ Pg.284 ]




SEARCH



Active ion uptake

Amino Acid Uptake by Ion Exchangers

Calcium ion rapid uptake mode

Ion-Exchange Capacity, Water Uptake, and Swelling Ratio

Metal-ion uptake

Uptake of 1-1 Electrolyte Ions at or Near the PZC

Uptake of Toxic Divalent Metal Ions in Neurotoxicity Induced by Kainate

Uptake, of metal ions

© 2024 chempedia.info