Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Complex concentration

Positionalisomeri tion occurs most often duting partial hydrogenation of unsaturated fatty acids it also occurs ia strongly basic or acidic solution and by catalysis with metal hydrides or organometaUic carbonyl complexes. Concentrated sulfuric or 70% perchloric acid treatment of oleic acid at 85°C produces y-stearolactone from a series of double-bond isomerizations, hydration, and dehydration steps (57). [Pg.86]

However, the results shown in Table 6 indicate that the k values calculated by using the ligand concentration ([ligand]T) instead of the complex concentration ([C]0) are much smaller than the kc value in the case of 29c-Zn2+. The [C]0 = 1.6 x 10-6 M for the 29-Zn2 + complex can be calculated based on K = 1.7 x 10-5 M 2 (Table 5), but it is difficult to calculate corrected ka values based on the equations in footnote (c) in Table 6, because the B values are close to [ligand]T = 1x10-4 M and much larger than [C]0, due to the acylation of almost all ligands. [Pg.164]

For each of these reactions kinetic data were obtained. The reactions were first order in complex concentration, and zero order in isocyanide, as expected. The complex Ni(CNBu )4, and presumably other Ni(CNR)4 complexes as well, undergo ligand dissociation in solution. In benzene solution, a molecular weight determination for this compound gives a low value (110). This is in accord with the presumed mechanism of substitution. [Pg.69]

OS 94][R 13][P 74]ForadmixtureofsampleswifhvaryingconcentrationsofCo(ll) and Cu(II), the respective changes in the Co(ll) chelate complex concentration as a function of contact time were optically derived [28]. Analysis was performed in the reaction/extraction area and also in the decomposition/removal area (Figure 4.102). As expected, more complex is formed in the reaction/extraction area with increasing contact time. Also, more complex results when increasing the Co(ll) concentration at constant Cu(ll) concentration. This proves that mass transfer is efficient (as high concentrations can also be handled) and that no interference from other analytes falsifies the measurement. As a result, calibration curves were derived. [Pg.564]

In some cases more complex concentration dependencies are observed where the reaction rate is proportional to cf (where p can be larger or smaller than unity) or to c[c2, where j = 2 represent other substances influencing the reaction rate (including substances decreasing the rate, e.g., reaction products, in which case q has negative values). [Pg.84]

In experiments with lowland rice Oiyzci saliva L.) it was found that roots quickly exhausted available sources of P and sub.sequently exploited the acid-soluble pool with small amounts deriving from the alkaline soluble pool (18). More recalcitrant forms of P were not utilized. The zone of net P depletion was 4-6 mm wide and showed accumulation in some P pools giving rather complex concentration profiles in the rhizosphere. Several mechanisms for P solubilization could be invoked in a conceptual model to describe this behavior. However using a mathematical model with independently measured parameters (19), it was shown that it could be accounted for solely by root-induced acidification. The acidification resulted from H" produced during the oxidation of Fe by Oi released from roots into the anaerobic rhizosphere as well as from cation/anion imbalances in ion uptake (18). Rice was shown to depend on root-induced acidification for more than 80% of its P uptake. [Pg.335]

Our studies on the surface pressure-area isotherms of MGDG and the mixture of PS II core complex and MGDG indicate the presence of both PS II core complex and MGDG in the monolayer. MGDG molecules diluted the PS II core complex concentration in the monolayer. MGDG lipid functions as a support for the protein complex and the resulting mixture forms higher-quality films than PS II core complex alone. [Pg.644]

Upon expressing from the equilibrium condition the complex concentration M12 through the concentrations of monomers, and substituting the expression found into relationship (21) we obtain, invoking the formalism of the Markov chains, final formulas enabling us to calculate instantaneous statistical characteristics of the ensemble of macromolecules with colored units. A subsequent color erasing procedure is carried out in the manner described above. For example, when calculating instantaneous copolymer composition, this procedure corresponds to the summation of the appropriate components of the stationary vector jt of the extended Markov chain ... [Pg.183]

Supplement with fresh frozen plasma (15-20 mL/kg) or prothrombin complex concentrate... [Pg.53]

Factor IX Replacement Hemophilia B therapy may include recombinant (produced via transfection of mammalian cells with the human factor IX gene) or plasma-derived (concentrate from pooled plasma) factor IX (see Table 64-2). Guidelines for choosing the factor-concentrate formulation for hemophilia B are similar to the guidelines for hemophilia A. However, older-generation factor IX concentrates containing other vitamin K-dependent proteins (e.g., factors II, VII, and IX), called prothrombin complex concentrates (PCCs), have been associated with thrombogenic side effects. Consequently, these products are not first-line treatment for hemophilia B.11... [Pg.990]

APCC, activated prothrombin complex concentrate PCC, prothrombin complex concentrate vWF, von Willebrand factor. [Pg.990]

Treatment algorithm for the management of patients with hemophilia A and factor VIII antibodies. BU, Bethesda unit PCC, prothrombin complex concentrate a PCC, activated prothrombin complex concentrate. [Pg.991]

FFP, fresh frozen plasma PCC, prothrombin complex concentrates. [Pg.994]

Immediate administration of 100 meg to 1 mg vitamin K subcutaneously or intravenously, followed by administration of FFP as necessary. Vitamin K administration via the intramuscular route may induce hematoma owing to coagulopathy, and intravenous administration should be slow because it has been associated with anaphylaxis. Prothrombin complex concentrate (PCC) at minimum dose of 50 units/kg should be given for life-threatening bleeding.27,28... [Pg.998]

It is instructive to examine predictions of the Bunimovich et al. model. The temperature profiles in Fig. 16a at times within a half cycle are about the same as the profiles for 6 vol% S02 predicted by Xiao and Yuan (1996) and shown in Fig. 14a. Note that curves 1 and 5 in Fig. 16 are those at the switching time and show the inversion when the flow direction changes. The remarkable prediction of the Table XI model is the sharp variation of the S03 concentration in the melt with position in the bed that develops about 1 min after the direction changes and persists for about 13 min. Curves (c) to (f) show there is a substantial change in the complexes present in the melt with position in the bed and that the complex concentrations... [Pg.244]

Fig. 16. Variation in a stationary cycling state of catalyst temperature, S03, and complex concentrations in the melt phase and the concentration of gas phase species with time in a half cycle in the forward flow portion of a reactor operating under periodic reversal of flow direction with r = 40 min, SV = 900 h (Csodo = 6 vol%, (Co2)o = 15 vol%, Ta = 50°C. Curves 1, just after switching flow direction 2,1 min 3, 6.6 min 4, 13.3 min, and 5, 20 min after a switch in flow direction. (Figure adapted from Bunimovich et at., 1995, with permission, 1995 Elsevier Science Ltd.)... Fig. 16. Variation in a stationary cycling state of catalyst temperature, S03, and complex concentrations in the melt phase and the concentration of gas phase species with time in a half cycle in the forward flow portion of a reactor operating under periodic reversal of flow direction with r = 40 min, SV = 900 h (Csodo = 6 vol%, (Co2)o = 15 vol%, Ta = 50°C. Curves 1, just after switching flow direction 2,1 min 3, 6.6 min 4, 13.3 min, and 5, 20 min after a switch in flow direction. (Figure adapted from Bunimovich et at., 1995, with permission, 1995 Elsevier Science Ltd.)...
Addition of the L-732,531 FKBP binary complex to a calcineurin activity assay resulted in increasingly nonlinear progress curves with increasing binary complex concentration. The htting of the data to Equation (6.3) revealed an inhibitor concentration effect on v-, as well as on vs and obs, consistent with a two-step mechanism of inhibition as in scheme C of Figure 6.3. Salowe and Hermes analyzed the concentration-response effects of the binary complex on v, and determined an IC50 of 0.90 pM that, after correction for I.S I/A (assuming competitive inhibition), yielded a A) value for the inhibitor encounter complex of 625 nM. [Pg.166]

Both complexes (867) and (868) promote the hydrolysis of urea in a two-step process.2080 Heating of (867) or (868) in acetonitrile solution produced ammonia with kinetic first-order dependence on complex concentration and an observed rate constant of (7.7 0.5) x 10-4 h-1 to yield a cyanate complex as the reaction product. When the reaction was carried out in 50% aqueous acetonitrile solution, ammonia was produced at the same rate but without buildup of the cyanate-containing product, suggesting that the latter is hydrolyzed in the presence of water. The hydrolysis rate was also first order in water, indicating that it occurred by attack of an external water on the coordinated cyanate.2080... [Pg.461]

The initial bromine concentration was 72.6 mmoles/m3, while the initial complex concentration was 1.49 moles/m3. The reaction may be considered to be essentially irreversible. The following data were reported. [Pg.68]

Many factors influence the deposition kinetics of P and B, including metal ion and complexant concentrations, solution pH, and temperature. Though unavoidable side products of the electroless deposits, P and B impart unique properties to electroless deposits, e.g., good corrosion resistance in the case of Ni-P deposits, where the P content can exceed 30 at% in certain solutions [10, 11],... [Pg.237]

Figure 4 - The influence of initial gold(III) complex concentration on (a) rate of adsorption and (b)... Figure 4 - The influence of initial gold(III) complex concentration on (a) rate of adsorption and (b)...
In one such procedure a rhodium complex concentrate prepared from a 400 ppm rhodium containing hydroformylation catalyst solution, for which catalytic activity had declined to about 30 percent of its initial value, was concentrated in a wiped-film evaporator to about 27,700 ppm rhodium. This concentrate was oxygenated with tertbu-tylhydroperoxide. After isolation and treatment with triphenylphosphine, a 70% yield of [HRh(CO)(PPh3)3] was obtained.[41]... [Pg.36]

Jacobsen et al. reported enhanced catalytic activity by cooperative effects in the asymmetric ring opening (ARO) of epoxides.[38] Chiral Co-salen complexes (Figure 4.27) were used, which were bound to different generations of commercial PAMAM dendrimers. As a direct consequence of the second-order kinetic dependence on the [Co(salen)] complex concentration of the hydrolytic kinetic resolution (HKR), reduction of the catalyst loading using monomeric catalyst leads to a sharp decrease in overall reaction rate. [Pg.91]

Sajus et al. [243,244] synthesized the peroxo complex of molybdenum(VI) and studied its reaction with a series of olefins. This peroxo complex M0O5 was proved to react with olefins with epoxide formation. The selectivity of the reaction increases with a decrease in the complex concentration. It was found to be as much as 95% at epoxidation of cyclohexene by M0O3 in a concentration 0.06 mol L-1 at 288 K in dichloroethylene [244], The rate of the reaction was found to be... [Pg.418]

The monomeric cw-diaqua Cu(H) complex 32 has been shown to promote efficiently the transesterification of HPNP (pH = 8 and T = 298 K) with second-order dependence on complex concentration [51]. In this... [Pg.228]

Ni2+ was very popular in the early days of the investigation of mechanisms of complex formation, since the time-scale for its reactions with simple ligands was so convenient for the then recently developed stopped-flow technique. However, interest has now moved on to other first-row cations, especially to Cu2+. A review of the kinetics and mechanisms of formation of tetraazamacrocyclic complexes concentrates on Ni2+ and Cu2+, and their reactions with cyclam and similar ligands (267). The tetra(4 -sulfonatophenyl)porphyrin complexes of Ni2+ and of Cu2+ react immeasurably slowly with cyanide, but their IV-methyl derivatives do react, albeit extremely slowly. The relevant time scales are hours for removal of Ni2+, months for the removal of Cu2+, by 10-4 M cyanide at pH 7.4 (268). [Pg.109]

In this equation, kjy is the rate constant for the diffusion-limited formation of the encounter complex, d is the rate constant for diffusion apart, and ka is that for the activation step, i.e. M-L bond formation. Based on the steady-state approximation for the encounter complex concentration, the apparent rate constant for the on reaction is kon = k kj (k - ,+ka), and the activation volume is defined as... [Pg.216]

One example was reported by Tolman and coworkers (78) who found that the copper(I) complex C Tp112 (TpR2=tris(3-(R2)-5-methylpyrazol-l-yl)hydroborate) promotes NO disproportionation via a weakly bound CuITpR2(NO) intermediate (formally a MNO 11 species). The products are N20 and a copper(II) nitrito complex (Eq. (36)). The rate law established the reaction to be first-order in copper complex concentration and second-order in [NO], and this was interpreted in terms of establishment of a pre-equilibrium between NO and the Cu(I) precursor and the Cux(NO) adduct, followed by rate-limiting electrophilic attack of a second NO molecule (mechanism B of Scheme 5) (78b). [Pg.230]

The stability constants of the mono- and bis-complexes between Cu(II) and catecholate were determined under anaerobic conditions and were found to be the same as reported earlier, i.e. log p1 = 13.64 (CuC) and log p2 24.92 (CuC2+) (36,39). A comparison of the speciation and oxidation rate as a function of pH clearly indicated that the mono-catechol complex is the main catalytic species, though the effect of other complexes could not be fully excluded. The rate of the oxidation reaction was half-order in [02] and showed rather complex concentration dependencies in [H2C]0, [Cu(II)]0 and pH. The experimental data were consistent with the following rate equation ... [Pg.412]


See other pages where Complex concentration is mentioned: [Pg.34]    [Pg.164]    [Pg.111]    [Pg.145]    [Pg.356]    [Pg.54]    [Pg.991]    [Pg.995]    [Pg.1001]    [Pg.166]    [Pg.69]    [Pg.69]    [Pg.88]    [Pg.64]    [Pg.800]    [Pg.176]    [Pg.33]   
See also in sourсe #XX -- [ Pg.481 , Pg.492 ]

See also in sourсe #XX -- [ Pg.481 , Pg.492 ]

See also in sourсe #XX -- [ Pg.43 ]




SEARCH



Activated complex, concentration

Cation concentration gradients metal complexes

Coagulation proteins prothrombin complex concentrate

Complex free ligand concentration

Complex modulus concentrated solutions

Complex viscosity concentrated solutions

Concentration nickel complexation

Concentration of complexing

Electrically active complex concentration equations

Evaluation of complex concentration

Fischer carbene complexes alkyne concentration

Hemophilia prothrombin complex concentrate

Hydrogen bonding complex concentration

Iridium-complex catalyzed carbonylation iodide concentration

Petroleum vanadium complex concentrations

Prothrombin complex concentrate

Pyrene, complexes) concentration

Racemic complex concentration

Rhodium complexes, equilibrium concentrations

Surface complexation models site concentration

Weak Complexing at Moderate Concentrations The Sea Water Problem

© 2024 chempedia.info