Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iodine solution, titration

C=The molarity of the iodine solution as determined by titration with standard 0.025 M Na2S203 solution, noting that C = [(0.025 xD)/E], where D = titre (ml) of standard 0.025 M sodium thiosulfate and E=volume (ml) of iodine solution titrated. [Pg.112]

The liberated iodine is titrated with standard sodium thiosulphate(Vr) solution after acidification to remove the hydroxide ions. [Pg.264]

In what way does a solution of hydrogen peroxide react with (a) chlorine water, (b) potassium permanganate solution, (c) potassium dichromate solution, (d) hydrogen sulphide 50 cm of an aqueous solution of hydrogen peroxide were treated with an excess of potassium iodide and dilute sulphuric acid the liberated iodine was titrated with 0.1 M sodium thiosulphate solution and 20.0 cm were required. Calculate the concentration of the hydrogen peroxide solution in g 1" ... [Pg.309]

Transfer 25 ml. of this dilute solution by means of a pipette to a conical flask, and add similarly 50 ml. of Ml 10 iodine solution. Now-add 10% sodium hydroxide solution until the liquid becomes pale yeilow in colour, and allow the solution to stand, with occasional shaking, at room temperature for at least 10 minutes. Then acidify with dilute hydrochloric acid (free from chlorine) in order to liberate the remaining iodine. Titrate the latter w ith Mho sodium thiosulphate solution, using starch as an indicator in the usual way. [Pg.458]

Hydrazine hydrate may be titrated with standard acid using methyl orange as indicator or, alternatively, against standard iodine solution with starch as indicator. In the latter case about 0-1 g., accurately weighed, of the hydrazine hydrate solution is diluted with about 100 ml. of water, 2-3 drops of starch indicator added, and immediately before titration 6 g. of sodium bicarbonate are introduced. Rapid titration with iodine gives a satisfactory end point. [Pg.190]

The hberated iodine is titrated with standard sodium thiosulfate solution. In the thiosulfate method, selenous acid is treated with an excess of standard sodium thiosulfate solution ... [Pg.335]

The excess Na2S202 is back-titrated with standard iodine solution. The permanganate method is based on the oxidation of Se(IV) to Se(VI). [Pg.335]

The Reich test is used to estimate sulfur dioxide content of a gas by measuring the volume of gas required to decolorize a standard iodine solution (274). Equipment has been developed commercially for continuous monitoring of stack gas by measuring the near-ultraviolet absorption bands of sulfur dioxide (275—277). The deterrnination of sulfur dioxide in food is conducted by distilling the sulfur dioxide from the acidulated sample into a solution of hydrogen peroxide, foUowed by acidimetric titration of the sulfuric acid thus produced (278). Analytical methods for sulfur dioxide have been reviewed (279). [Pg.147]

The analyses can be carried out in the presence of /V-methy1o1 groups. On fabric, the formaldehyde bisulfite compound is decomposed by excess sodium carbonate and the Hberated sulfite is titrated with 0.1- or 0.01-N iodine solution (76). Commercial fabrics are seldom washed and dried before being used, and the free formaldehyde content may be between 50 and several hundred ppm, depending on finishing and storage conditions. [Pg.446]

Titration of thioglycolate esters is also realized by iodine in alcohoHc solution. Titration of thioglycolic acid (acid number) in thioglycolate esters is effected by potentiometric titration with potassium hydroxide. [Pg.4]

Sodium thiosulfate is determined by titration with standard iodine solution (37). Sulfate and sulfite are determined together by comparison of the turbidity produced when barium chloride is added after the iodine oxidation with the turbidity produced by a known quantity of sulfate iu the same volume of solution. The absence of sulfide is iadicated when the addition of alkaline lead acetate produces no color within one minute. [Pg.30]

Analytical and Test Methods. Analysis and test methods are similar to those for sodium thiosulfate. Sulfite is determined by an indirect method based on the titration of the acid Hberated when both the sulfite and thiosulfate are oxidized with iodine solution (69). [Pg.31]

Assay of hydrogen cyanide can be done by specific gravity or silver nitrate titration. Sulfur dioxide in hydrogen cyanide can be deterrnined by infrared analysis or by reaction of excess standard iodine solution and titration, using standard sodium thiosulfate or by measurement of total acidity by... [Pg.379]

The sulfide ions in Ln S, LnSF were detenuined after sample s treatment by titrated solution in a week-acid media. Excess iodine was titrated with Na S Oj solution. Fluoride ions in LnF, LnSF were detenuined after sample s treatment by H BO titrated solution. After the removal of BF excess boric acid was converted into the stronger mannitoboric acid, which was titrated potentiometrically with NaOFI solution. [Pg.164]

Bi,Sr,CaCu,03 g + (2y-12)T 2BF++ 2Sr -"+ Ca -"+ 2CuI + yO -+ (y-7)I, In this ease the exeess of aside solution and potassium iodide solution are added to analyzing eompound with eontinuous stirring. The generated iodine is titrated by Na3S,03 solution. The ealeulation of oxygen index (y) is eaiTying out by formula ... [Pg.221]

For the estimation of benzaldehyde, Eipper proposed a volumetric modification of the bisulphite process, the aldehyde being shaken with a measured volume of a standard solution of bisulphite, and the excess of bisulphite titrated back with iodine solution at a low tempe/atnrer Dodge found this give fairly accurate results, and recommends the iollowing method of carrying out the determination. About 0 15 gram... [Pg.339]

The alkaline solution of thymol is made up to 100 or 200 c.c. as the case may require, using a 5 per cent, soda solution. To 10 c.c. of this solution in a graduated 500 c.c. flask is added a normal iodine solution in shgbt excess, whereupon the thymol is precipitated as a dark reddish-brown iodine compound. In order to ascertain whether a sufficient quantity of iodine has been added, a few drops are transferred into a test tube and a few drops of dilute hydrochloric acid are added. When enou iodine is present, the brown colour of the solution indicates the presence of io ne, otherwise the liquid appears milky by the separation of thymol. If an excess of iodine is present, the solution is slightly acidified with dilute hydrochloric acid and diluted to 500 c.c. From this 100 c.c. are filtered,off, and the excess of iodine determined by titration with normal solution of sodium thiosulphate. For calculation, the number of cubic centimetres required is deducted from the number of cubic centimetres of normal iodine solution added and the resultant figure multiplied by 5, which gives the number of cubia centimetres of iodine required by the thymol. [Pg.349]

In order that the reaction may proceed rapidly it is important to shake the mixture thoroughly after adding the iodine solution. When this is done the iodine compound is formed completely within one minute. With thymol it affords thymol di-iodide. In order to make sure that any iodine wnich may have entered into the hydroxyl-group is again liberated, care should be taken that a little hydriodic acid is always present hence the addition of the potassium iodide solution before the exc ess of iodine is titrated back with thiosulphate. Titration can only be regarded as complete when the blue coloration does not return in 10 minutes. [Pg.350]

The benzoylperoxide used was analyzed by dissolving r g. in 25 cc. of dry ether and adding 2 cc. of 5 per cent sodium ethylate solution, keeping the temperature below — 50. The ether solution was extracted with exactly 100 cc. of cold water and an aliquot part of the aqueous extract taken. To this was added 2 cc. of 5 per cent potassium iodide and 2 cc. of dilute hydrochloric acid and the liberated iodine was titrated with 0.1 N sodium thiosulfate solution. The peroxide analyzed 90 per cent pure. [Pg.31]

The hydrogen ions thus set free can be titrated with a standard solution of sodium hydroxide using an acid-base indicator or a potentiometric end point alternatively, an iodate-iodide mixture is added as well as the EDTA solution and the liberated iodine is titrated with a standard thiosulphate solution. [Pg.312]

The standard solution is prepared by dissolving a weighed amount of pure potassium iodate in a solution containing a slight excess of pure potassium iodide, and diluting to a definite volume. This solution has two important uses. The first is as a source of a known quantity of iodine in titrations [compare Section 10.115(A)] it must be added to a solution containing strong acid it cannot be employed in a medium which is neutral or possesses a low acidity. [Pg.386]

Only freshly prepared starch solution should be used. Two millilitres of a 1 per cent solution per 100 mL of the solution to be titrated is a satisfactory amount the same volume of starch solution should always be added in a titration. In the titration of iodine, starch must not be added until just before the end point is reached. Apart from the fact that the fading of the iodine colour is a good indication of the approach at the end point, if the starch solution is added when the iodine concentration is high, some iodine may remain adsorbed even at the end point. The indicator blank is negligibly small in iodimetric and iodometric titrations of 0.05M solutions with more dilute solutions, it must be determined in a liquid having the same composition as the solution titrated has at the end point. [Pg.388]

The resulting solution has a much lower vapour pressure than a solution of iodine in pure water, and consequently the loss by volatilisation is considerably diminished. Nevertheless, the vapour pressure is still appreciable so that precautions should always be taken to keep vessels containing iodine closed except during the actual titrations. When an iodide solution of iodine is titrated with a reductant, the free iodine reacts with the reducing agent, this displaces the equilibrium to the left, and eventually all the tri-iodide is decomposed the solution therefore behaves as though it were a solution of free iodine. [Pg.389]

Using a burette or a pipette with a safety pump (this is necessary owing to the poisonous properties of the solution) measure out 25.0 mL of the arsenite solution into a 250 mL conical flask, add 25-50 mL of water, 5g of sodium hydrogencarbonate, and 2 mL of starch solution. Swirl the solution carefully until the hydrogencarbonate has dissolved. Then titrate slowly with the iodine solution, contained in a burette, to the first blue colour. [Pg.390]

Alternatively, the arsenite solution may be placed in the burette, and titrated against 25.0 mL of the iodine solution contained in a conical flask. When the solution has a pale yellow colour, add 2mL of starch solution, and continue the titration slowly until the blue colour is just destroyed. [Pg.390]

If it is desired to base the standardisation directly upon arsenic(III) oxide, proceed as follows. Weigh out accurately about 0.20 g of pure arsenic(III) oxide into a conical flask, dissolve it in 10 mL of 1M sodium hydroxide, and add a small excess of dilute sulphuric acid (say, 12-15 mL of 0.5M acid). Mix thoroughly and cautiously. Then add carefully a solution of 2 g of sodium hydrogencarbonate in 50 mL of water, followed by 2 mL of starch solution. Titrate slowly with the iodine solution to the first blue colour. Repeat with two other similar quantities of the oxide. [Pg.390]

Only a small amount of potassium iodate is needed so that the error in weighing 0.14-0.15 g may be appreciable. In this case it is better to weigh out accurately 4.28 g of the salt (if a slightly different weight is used, the exact molarity is calculated), dissolve it in water, and make up to 1 L in a graduated flask. Twenty-five millilitres of this solution are treated with excess of pure potassium iodide (I g of the solid or 10 mL of 10 per cent solution), followed by 3 mL of IM sulphuric acid, and the liberated iodine is titrated as detailed above. [Pg.392]

C) With a standard solution of iodine. If a standard solution of iodine is available (see Section 10.112), this may be used to standardise the thiosulphate solution. Measure a 25.0 mL portion of the standard iodine solution into a 250 mL conical flask, add about 150 mL distilled water and titrate with the thiosulphate solution, adding 2 mL of starch solution when the liquid is pale yellow in colour. [Pg.393]

This explains the reappearance of iodine after the end point in the titration of very dilute iodine solutions by thiosulphate. [Pg.393]

The liberated iodine is titrated with standard sodium thiosulphate solution. [Pg.394]

Better results are obtained by transferring 25.0 mL of the diluted hydrogen peroxide solution to a conical flask, and adding 100 mL 1M(1 20) sulphuric acid. Pass a slow stream of carbon dioxide or nitrogen through the flask, add 10 mL of 10 per cent potassium iodide solution, followed by three drops of 3 per cent ammonium molybdate solution. Titrate the liberated iodine immediately with standard 0.1M sodium thiosulphate in the usual way. [Pg.395]

The liberated iodine is titrated with standard sodium thiosulphate solution. The solution should not be strongly acidified with hydrochloric acid, for the little calcium chlorate which is usually present, by virtue of the decomposition of the hypochlorite, will react slowly with the potassium iodide and liberate iodine ... [Pg.397]

In the second method, the hypochlorite solution or suspension is titrated against standard sodium arsenite solution this is best done by adding an excess of the arsenite solution and then back-titrating with standard iodine solution. [Pg.397]

For good results, the following experimental conditions must be observed (1) the hydrochloric acid concentration in the final solution should be at least 4M (2) air should be displaced from the titration mixture by adding a little solid sodium hydrogencarbonate (3) the solution must be allowed to stand for at least 5 minutes before the liberated iodine is titrated and (4) constant stirring is essential during the titration to prevent decomposition of the thiosulphate in the strongly acid solution. [Pg.397]

A similar procedure may also be used for the determination of antimony(V), whilst antimony (III) may be determined like arsenic(III) by direct titration with standard iodine solution (Section 10.113), but in the antimony titration it is necessary to include some tartaric acid in the solution this acts as complexing agent and prevents precipitation of antimony as hydroxide or as basic salt in alkaline solution. On the whole, however, the most satisfactory method for determining antimony is by titration with potassium bromate (Section 10.133). [Pg.398]

In determinations of sulphurous acid and sulphites, excess of standard 0.05M iodine is diluted with several volumes of water, acidified with hydrochloric or sulphuric acid, and a known volume of the sulphite or sulphurous acid solution is added slowly and with constant stirring from a burette, with the jet close to the surface of the liquid. The excess of iodine is then titrated with standard 0.1M sodium thiosulphate. Solid soluble sulphites are finely powdered and added directly to the iodine solution. Insoluble sulphites (e.g. calcium sulphite) react very slowly, and must be in a very fine state of division. [Pg.398]

Procedure. Pipette 25.0 mL standard (0.05M) iodine solution into a 500 mL conical flask and add 5 mL 2M hydrochloric acid and 150 mL distilled water. Weigh accurately sufficient solid sulphite to react with about 20 mL 0.05M iodine solution and add this to the contents of the flask swirl the liquid until all the solid has dissolved and then titrate the excess iodine with standard (0.1M) sodium thiosulphate using starch indicator. If the sulphite is in solution, then a volume of this equivalent to about 20 mL of 0.05M iodine should be pipetted into the contents of the flask in place of the weighed amount of solid. [Pg.398]

Dilute solutions of sodium thiosulphate (e.g. 0.001 M) may be titrated with dilute iodine solutions (e.g. 0.005M) at zero applied voltage. For satisfactory results, the thiosulphate solution should be present in a supporting electrolyte which is 0.1 M in potassium chloride and 0.004 M in potassium iodide. Under these conditions no diffusion current is detected until after the equivalence point when excess of iodine is reduced at the electrode a reversed L-type of titration graph is obtained. [Pg.633]

Procedure. Place 25.0 mL of the thiosulphate solution in the titration cell. Set the applied voltage to zero with respect to the S.C.E. after connecting the rotating platinum micro-electrode to the polarising unit. Adjust the range of the micro-ammeter. Titrate with the standard 0.005 M iodine solution in the usual manner. [Pg.633]

Procedure. Pipette 25.0 mL of the thiosulphate solution into the titration cell e.g. a 150mL Pyrex beaker. Insert two similar platinum wire or foil electrodes into the cell and connect to the apparatus of Fig. 16.17. Apply 0.10 volt across the electrodes. Adjust the range of the micro-ammeter to obtain full-scale deflection for a current of 10-25 milliamperes. Stir the solution with a magnetic stirrer. Add the iodine solution from a 5 mL semimicro burette slowly in the usual manner and read the current (galvanometer deflection) after each addition of the titrant. When the current begins to increase, stop the addition then add the titrant by small increments of 0.05 or 0.10 mL. Plot the titration graph, evaluate the end point, and calculate the concentration of the thiosulphate solution. It will be found that the current is fairly constant until the end point is approached and increases rapidly beyond. [Pg.636]


See other pages where Iodine solution, titration is mentioned: [Pg.1165]    [Pg.461]    [Pg.221]    [Pg.245]    [Pg.410]    [Pg.340]    [Pg.342]    [Pg.350]    [Pg.386]    [Pg.540]   
See also in sourсe #XX -- [ Pg.338 ]




SEARCH



Iodine solutions

Iodine titration

© 2024 chempedia.info