Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iodine-copper® chloride

A number of pyridazines have been prepared by standard condensations of enediones with hydrazine but a general synthesis of the intermediate enediones is notable. This involved iodine-copper exchange of an iodoenone 3, followed by reaction of the resulting cuprate with acid chlorides. However, only a few of these enediones were actually converted into pyridazines <06OL1941>. [Pg.385]

Copper 11 halides are formed with chlorine, bromine and iodine, the chloride and bromide by reduction of the coppertll) halides with copper powder, and the iodide by reduction of coppertll) sulfate. CuSOj solulion with potassium iodide. The fluoride appears never to have been made, despite reports to the contrary. All are insoluble in H20. CoppertUl fluoride, CuF may be made from CuO and hydrofluoric acid at 400°C. coppertll) chloride. CuCl by dissolving the oxide or carbonate in HCI, and coppertll) bromide. CuBr from copper and bromine water coppertll) iodide. Cub, is unstable at room temperature with respect to decomposition intu Cul and iodine. The chloride and bromide are water-soluble, and ionic. The fluoride is only slightly water-soluble. Anhydrous copper(U) chloride. Cud , is monoclinic and its structure contains infinite-chain molecules formed by CuCLi groups that share opposite edges. CuBr. has a similar structure. [Pg.441]

ARYL IODIDES Iodine-Aluminum chloride-Copper(II) chloride. Potassium iodide-Dimethyl sulfoxide. [Pg.312]

Session 4 focused on recent advances in the thermochemical copper chloride and calcium bromide cycles. Much of the current research on thermochemical cycles for hydrogen production involves the sulphur cycles (sulphur-iodine, hybrid sulphur), however, these cycles require very high temperatures ( 800-900°C) to drive the acid decomposition step. The interest in the Cu-Cl and Ca-Br cycles is due to the lower peak temperature requirements of these cycles. The peak temperature requirement for the Cu-Cl cycle is about 550°C, which would allow this cycle to be used with lower temperature reactors, such as sodium- or lead-cooled reactors, or possibly supercritical water reactors. Ca-Br requires peak temperatures of about 760°C. Both of these cycles are projected to have good efficiencies, in the range of 40%. Work on Cu-Cl is ongoing in France, Canada and the United States. Work on Ca-Br has been done primarily in Japan and the US, with the more recent work being done in the US at ANL. The papers presented in this session summarised the recent advances in these cycles. [Pg.13]

Copper(I) chloride and bromide are made by boiling an acidic solution of the Cu" salt with an excess of Cu on dilution, white CuCl or pale yellow CuBr is precipitated. Addition of I- to a solution of Cu2+ forms a precipitate that rapidly and quantitatively decomposes to Cul and iodine. Copper(I) fluoride is unknown. The halides have the zinc blende structure (tetrahedrally coordinated Cu+). Cop-per(I) chloride and CuBr are polymeric in the vapor state, and for CuCl the principal species appears to be a six ring of alternating Cu and Cl atoms with Cu—Cl, —2.16 A. White CuCl becomes deep blue at 178°C and melts to a deep green liquid. The halides are very insoluble in water but are solubilized by complex formation... [Pg.857]

Benzoyl disulfide has been obtained by the reaction of benzoyl chloride with hydrogen sulfide, hydrogen disulfide, hydrogen trisulfide, potassium sulfide, sodium disulfide, lead sulfide, sodium hydrosulfite, sodium thiosulfate, sulfhydrylmagnesium bromide, and thiobenzamide. It is also formed by reaction of benzoic anhydride with hydrogen sulfide. The better preparative methods involve the oxidation of thiobenzoic add by means of air,hydrogen peroxide or sulfur monochloride, or of the sodium or potassium salt by means of air, - chlorine, iodine, copper sulfate, - potassium ferricyanide, - or ferric chloride. - ... [Pg.18]

Several alternatives to the sulfiir-iodine process and steam electrolysis are being considered. Thermo-electrochemical cycles at various stages of development are being studied, including two hybrid sulfur-based cycles, the copper-chloride cycle, the magnesium-chloride cycle, the copper ferrite cycle,. Screening tools have been developed to rapidly assess less mature thermo-electrochemical cycles to help decide whether further research is warranted. [Pg.390]

An efficient copper-catalysed allylic trifluoromethylation reaction has been developed. This reaction provides a general and straightforward way to construct allylic trifluoromethylated compounds under mild conditions. The reaction employs cheap copper chloride as the catalyst and a hypervalent iodine(III) reagent as both the oxidant and the CF3 source. [Pg.356]

Preparation. Thiophosgene forms from the reaction of carbon tetrachloride with hydrogen sulfide, sulfur, or various sulfides at elevated temperatures. Of more preparative value is the reduction of trichi oromethanesulfenyl chloride [594-42-3] by various reducing agents, eg, tin and hydrochloric acid, staimous chloride, iron and acetic acid, phosphoms, copper, sulfur dioxide with iodine catalyst, or hydrogen sulfide over charcoal or sihca gel catalyst (42,43). [Pg.131]

A mixture consisting of 0.69 g (10.5 mmoles) of zinc-copper couple, 12 ml of dry ether, and a small crystal of iodine, is stirred with a magnetic stirrer and 2.34 g (0.7 ml, 8.75 mmoles) of methylene iodide is added. The mixture is warmed with an infrared lamp to initiate the reaction which is allowed to proceed for 30 min in a water bath at 35°. A solution of 0.97 g (2.5 mmoles) of cholest-4-en-3/ -ol in 7 ml of dry ether is added over a period of 20 min, and the mixture is stirred for an additional hr at 40°. The reaction mixture is cooled with an ice bath and diluted with a saturated solution of magnesium chloride. The supernatant is decanted from the precipitate, and the precipitate is washed twice with ether. The combined ether extracts are washed with saturated sodium chloride solution and dried over anhydrous sodium sulfate. The solvent is removed under reduced pressure and the residue is chromatographed immediately on 50 g of alumina (activity III). Elution with benzene gives 0.62 g (62%) of crystalline 4/5,5/5-methylene-5 -cholestan-3/5-ol. Recrystallization from acetone gives material of mp 94-95° Hd -10°. [Pg.112]

Copper(ll) chloride, aromatic iodination and, 551 Coproslanol, structure of, 304 Coral, organohalides from, 352 Corn oil, composition of. 1062 Cornforlh. John Warcup. 1085 Coronene, structure of, 532 Cortisone, structure of. 107 Couper, Archibald Scott, 7 Coupled reactions. 1128-1129 ATP and, 1128-1129 Coupling (NMU), 460... [Pg.1292]

We have, in this chapter, encountered a number of properties of solids. In Table 5-II, we found that melting points and heats of melting of different solids vary widely. To melt a mole of solid neon requires only 80 calories of heat, whereas a mole of solid copper requires over 3000 calories. Some solids dissolve in water to form conducting solutions (as does sodium chloride), others dissolve in water but no conductivity results (as with sugar). Some solids dissolve in ethyl alcohol but not in water (iodine, for example). Solids also range in appearance. There is little resemblance between a transparent piece of glass and a lustrous piece of aluminum foil, nor between a lump of coal and a clear crystal of sodium chloride. [Pg.80]

The reaction is a sensitive one, but is subject to a number of interferences. The solution must be free from large amounts of lead, thallium (I), copper, tin, arsenic, antimony, gold, silver, platinum, and palladium, and from elements in sufficient quantity to colour the solution, e.g. nickel. Metals giving insoluble iodides must be absent, or present in amounts not yielding a precipitate. Substances which liberate iodine from potassium iodide interfere, for example iron(III) the latter should be reduced with sulphurous acid and the excess of gas boiled off, or by a 30 per cent solution of hypophosphorous acid. Chloride ion reduces the intensity of the bismuth colour. Separation of bismuth from copper can be effected by extraction of the bismuth as dithizonate by treatment in ammoniacal potassium cyanide solution with a 0.1 per cent solution of dithizone in chloroform if lead is present, shaking of the chloroform solution of lead and bismuth dithizonates with a buffer solution of pH 3.4 results in the lead alone passing into the aqueous phase. The bismuth complex is soluble in a pentan-l-ol-ethyl acetate mixture, and this fact can be utilised for the determination in the presence of coloured ions, such as nickel, cobalt, chromium, and uranium. [Pg.684]

Mixtures with chlorine, bromine or iodine explode on warming. A mixture with chlorine passed through a copper tube at 300°C exploded with variable intensity. Aluminium chloride explodes in the dilluoride, and antimony pentachloride lightly at 150°C. [Pg.1524]

Modras (51) reported spot test reactions to differentiate hydralazine from closely related drugs. Reagents used were aqueous copper (I) chloride, aqueous ammonium molybdate, iodine in potassium iodide solution, aqueous cobalt (II) nitrate, alcoholic ninhydrin, and alcoholic bromophenol blue. The tests were performed on paper or on Silica Gel G. [Pg.304]

The syntheses of 1 utilized the Ullmann ether synthesis.13 Reaction of 2 mol of 1-bromonaphthalene with 4,4-(hexafluoroisopropylidiene)diphenol afforded the desired product 1. The reaction was carried out in DM Ac at 160°C in the presence of potassium carbonate as the base and copper (I) iodine as the reaction catalyst to yield 1, as depicted in Scheme 1. The reaction proceeded slowly but in good yield with easy isolation of the desired compound. Acylation of 1 with 4-fluorobenzoyl chloride to prepare 2 was carried out under modified Friedel-Crafts reaction conditions14 using dimethyl-sulfone as catalyst moderator. Both 1 and 2 were easily recrystallized to yield high-purity monomers suitable for polymerizations. [Pg.115]

Olivetol. 3,5-Dimethoxybenzyl alcohol. (This can be made by reducing 3,5-dimethoxybenzoic acid, or it can be purchased.) (10 g) in 100 ml of methylene chloride is cooled to 0° and 15 g of PBrs is added. Warm to room temp and stir for 1 hour, then add a little ice water followed by more methylene chloride. Add petroleum ether to precipitate the benzyl bromide, which is separated off. 9.3 g of the benzyl bromide is put in a flask with 800 ml of dry ether and then add 15 g of copper iodine at 0°. Add butyl lithium (16% in hexane) and stir for four hours at 0°. Add saturated NH4CI and extract with ether. The ether is removed by evaporating in vacuo to give the olivetol dimethyl ether which must be demethylated by one of the methods given in the above formulas. Yield A little over 4 g. Taken from HCA, 52, 1132. [Pg.72]


See other pages where Iodine-copper® chloride is mentioned: [Pg.335]    [Pg.476]    [Pg.465]    [Pg.908]    [Pg.128]    [Pg.2151]    [Pg.5602]    [Pg.34]    [Pg.446]    [Pg.2752]    [Pg.373]    [Pg.337]    [Pg.161]    [Pg.524]    [Pg.3]    [Pg.84]    [Pg.117]    [Pg.681]    [Pg.168]    [Pg.101]    [Pg.382]    [Pg.426]    [Pg.2]    [Pg.172]    [Pg.390]    [Pg.48]    [Pg.100]    [Pg.48]    [Pg.100]   


SEARCH



Copper chloride

© 2024 chempedia.info