Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inverse-emulsion

Inverse emulsion process Inverse soaps Invert molasses Invert sugar... [Pg.518]

Manufacturing processes have been improved by use of on-line computer control and statistical process control leading to more uniform final products. Production methods now include inverse (water-in-oil) suspension polymerization, inverse emulsion polymerization, and continuous aqueous solution polymerization on moving belts. Conventional azo, peroxy, redox, and gamma-ray initiators are used in batch and continuous processes. Recent patents describe processes for preparing transparent and stable microlatexes by inverse microemulsion polymerization. New methods have also been described for reducing residual acrylamide monomer in finished products. [Pg.139]

Microemulsion Polymerization. Polyacrylamide microemulsions are low viscosity, non settling, clear, thermodynamically stable water-in-od emulsions with particle sizes less than about 100 nm (98—100). They were developed to try to overcome the inherent settling problems of the larger particle size, conventional inverse emulsion polyacrylamides. To achieve the smaller microemulsion particle size, increased surfactant levels are required, making this system more expensive than inverse emulsions. Acrylamide microemulsions form spontaneously when the correct combinations and types of oils, surfactants, and aqueous monomer solutions are combined. Consequendy, no homogenization is required. Polymerization of acrylamide microemulsions is conducted similarly to conventional acrylamide inverse emulsions. To date, polyacrylamide microemulsions have not been commercialized, although work has continued in an effort to exploit the unique features of this technology (100). [Pg.143]

The inverse emulsion form is made by emulsifying an aqueous monomer solution in a light hydrocarbon oil to form an oil-continuous emulsion stabilized by a surfactant system (21). This is polymerized to form an emulsion of aqueous polymer particle ranging in size from 1.0 to about 10 pm dispersed in oil. By addition of appropriate surfactants, the emulsion is made self-inverting, which means that when it is added to water with agitation, the oil is emulsified and the polymer goes into solution in a few minutes. Alternatively, a surfactant can be added to the water before addition of the inverse polymer emulsion (see Emulsions). [Pg.33]

If either dry powders or inverse emulsions are not properly mixed with water, large lumps of polymer form that do not dissolve. This not only wastes material, but can also cause downstream problems. This is especially tme for paper where visible defects may be formed. Specialized equipment for dissolving both dry polymers and inverse emulsions on a continuous basis is available (22,23). Some care must be taken with regard to water quaUty when dissolving polyacrylamides. Anionic polymers can degrade rapidly in the presence of ferrous ion sometimes present in well water (24). Some cationic polymers can lose charge by hydrolysis at high pH (25). [Pg.33]

Fig. 10. Amide end-capped poly(hexafluoropropy-lene oxide) used for the inverse emulsion polymerization of acrylamide in C02 [123]... Fig. 10. Amide end-capped poly(hexafluoropropy-lene oxide) used for the inverse emulsion polymerization of acrylamide in C02 [123]...
The active alkoxyl radicals formed by this reaction start new chains. Apparently, the hydroperoxide group penetrates in the polar layer of the micelle and reacts with the bromide anion. The formed hydroxyl ion remains in the aqueous phase, and the MePhCHO radical diffuses into the hydrocarbon phase and reacts with ethylbenzene. The inverse emulsion of CTAB accelerates the decay of hydroperoxide MePhCHOOH. The decomposition of hydroperoxide occurs with the rate constant k = 7.2 x 1011 exp(-91.0/R7) L mol-1 s-1 (T = 323-353 K, CTAB, ethylbenzene [28]). The decay of hydroperoxide occurs more rapidly in an 02 atmosphere, than in an N2 atmosphere. [Pg.439]

As for direct emulsions, the presence of excess surfactant induces depletion interaction followed by phase separation. Such a mechanism was proposed by Binks et al. [ 12] to explain the flocculation of inverse emulsion droplets in the presence of microemulsion-swollen micelles. The microscopic origin of the interaction driven by the presence of the bad solvent is more speculative. From empirical considerations, it can be deduced that surfactant chains mix more easily with alkanes than with vegetable, silicone, and some functionalized oils. The size dependence of such a mechanism, reflected by the shifts in the phase transition thresholds, is... [Pg.113]

In the conventional emulsion polymerization, a hydrophobic monomer is emulsified in water and polymerization initiated with a water-soluble initiator. Emulson polymerization can also be carried out as an inverse emulsion polymerization [Poehlein, 1986]. Here, an aqueous solution of a hydrophilic monomer is emulsified in a nonpolar organic solvent such as xylene or paraffin and polymerization initiated with an oil-soluble initiator. The two types of emulsion polymerizations are referred to as oil-in-water (o/w) and water-in-oil (w/o) emulsions, respectively. Inverse emulsion polymerization is used in various commerical polymerizations and copolymerizations of acrylamide as well as other water-soluble monomers. The end use of the reverse latices often involves their addition to water at the point of application. The polymer dissolves readily in water, and the aqueous solution is used in applications such as secondary oil recovery and flocculation (clarification of wastewater, metal recovery). [Pg.367]

Nonionic surfactants such as sorbitan monooleate yield more stable emulsions than do ionic surfactants, However, the latices from inverse emulsion polymerizations are generally less stable than those from conventional emulsion polymerizations, and flocculation is a problem. [Pg.367]

These superabsorbents are synthesized via free radical polymerization of acrylic acid or its salts in presence of a crosslinker (crosslinking copolymerization). Initiators are commonly used, water-soluble compounds (e.g., peroxodi-sulfates, redox systems). As crosslinking comonomers bis-methacrylates or N,hT-methylenebis-(acrylamide) are mostly applied. The copolymerization can be carried out in aqueous solution (see Example 5-11 or as dispersion of aqueous drops in a hydrocarbon (inverse emulsion polymerization, see Sect. 2.2.4.2). [Pg.349]

The homopolymerization of DADMAC is possible in several organic solvents such as acetone, l-methyl-2-pyrrolidone, tetramethylurea, or dimethylform-amide. Various initiation methods including radical, ionic, or x-ray induced polymerization have been employed [19]. Since the monomer solubility is limited in these solvents, and the resulting homopolymer is soluble only in water, methanol and acidic acid, the polymerization in aqueous solutions are preferred. Polymerization in both homogeneous and heterogeneous systems have been studied and the kinetics and mechanisms were investigated in aqueous solution and in inverse-emulsion [6-16,52,53]. [Pg.135]

The initial rate of polymerization of the inverse emulsion polymerization using sodium di-2-ethyl-hexyl sulfosuccinate (AOT) and sorbitan monooleat (SMO) as emulsifiers and an oil soluble azo initiator can be expressed by [13] ... [Pg.141]

Fig. 11. Inverse-emulsion polymerization of DADMAC. Influence of the monomer concentration on the partition equilibrium of the monomer. (cM)0 initial monomer concentration in monomer/water droplets at equilibrium cM>M monomer concentration in micells at equilibrium) (Data taken from [13])... Fig. 11. Inverse-emulsion polymerization of DADMAC. Influence of the monomer concentration on the partition equilibrium of the monomer. (cM)0 initial monomer concentration in monomer/water droplets at equilibrium cM>M monomer concentration in micells at equilibrium) (Data taken from [13])...
Adamsky, F. A. Beckman, E. J. Inverse Emulsion Polymerization of Acrylamide in Supercritical Carbon Dioxide. Macromolecules 1994, 27, 312. [Pg.173]

The formation of coagulum is observed in all types of emulsion polymers (i) synthetic rubber latexes such as butadiene-styrene, acrylonitrile-butadiene, and butadiene-styrene-vinyl pyridine copolymers as well as polybutadiene, polychloroprene, and polyisoprene (ii) coatings latexes such as styrene-butadiene, acrylate ester, vinyl acetate, vinyl chloride, and ethylene copolymers (iii) plastisol resins such as polyvinyl chloride (iv) specialty latexes such as polyethylene, polytetrafluoroethylene, and other fluorinated polymers (v) inverse latexes of polyacrylamide and other water-soluble polymers prepared by inverse emulsion polymerization. There are no major latex classes produced by emulsion polymerization that are completely free of coagulum formation during or after polymerization. [Pg.201]


See other pages where Inverse-emulsion is mentioned: [Pg.142]    [Pg.33]    [Pg.227]    [Pg.68]    [Pg.75]    [Pg.51]    [Pg.127]    [Pg.485]    [Pg.908]    [Pg.1]    [Pg.18]    [Pg.112]    [Pg.190]    [Pg.210]    [Pg.212]    [Pg.216]    [Pg.186]    [Pg.227]    [Pg.77]    [Pg.49]    [Pg.142]    [Pg.144]    [Pg.175]    [Pg.157]    [Pg.178]    [Pg.8]   
See also in sourсe #XX -- [ Pg.68 ]

See also in sourсe #XX -- [ Pg.727 ]

See also in sourсe #XX -- [ Pg.15 ]

See also in sourсe #XX -- [ Pg.157 , Pg.158 , Pg.159 , Pg.160 , Pg.161 ]




SEARCH



Acrylamide inverse emulsions

Calculation of phase inversion in concentrated emulsions

Emulsion inversed

Emulsion inversed

Emulsion inversion

Emulsion inversion

Emulsion inversion point

Emulsion process, inverse

Emulsions Theory, Rheology and Stability to Inversion

Emulsions phase inversion

INVERSE EMULSION POLYMERISATION

Inverse emulsion polymerization

Inverse emulsion polymerization discussion

Inverse emulsion polymerization, particle

Inverse emulsion, difficulties

Inverse polymer emulsion

Inversion, multiple emulsions

Nanogels inverse emulsion

PIT - Phase inversion temperature of emulsion based on non-ionic emulsifiers

Phase inversion of emulsions

Phase inversion temperature , emulsion

Phase inversion temperature , emulsion stability

Polymer-Clay Nanocomposite Particles by Inverse Emulsion Polymerization

Surfactant Design for Inverse Emulsion Polymerization

© 2024 chempedia.info