Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intermolecular reactions ligand development

Chiral dirhodium(II) catalysts with carboxylate or carboxamidate ligands have recently been developed to take advantage of their versatility in metal carbene transformation, and these have now become the catalysts of choice for cyclopropanation. Chiral carboxylate ligands 195,103 196,104 and 197105 have been used for tetrasubstitution around a dirhodium(II) core. However, the enantioselectivity in intermolecular reactions with simple ketenes is marginal. [Pg.316]

In comparison, intermolecular reaction met high challenges due to both enthalpy and entropy reasons. In 2007, He and coworkers developed a disilver-based new catalyst 11 which showed high efficiency for intramolecular C-H amination reaction (Scheme 10) [32]. Such an intermolecular C-H amination/amidation ran at mild condition. The new catalyst set has successfully been applied to intermolecular amination reaction for the first time (Scheme 11). In the reaction, the catalyst was added in two portions in order to increase the yield. Under typical reaction condition, AgOTf (2 mol%) and ligand (2.4 mol%) were mixed in DCM in a tube for 20 min. Then the substrate (5.0 or 10.0 eqmv.), PhI=NNs (1.0 equiv.) and 4 A molecular sieves (2 g/mmol) were added under N2 atmosphere. The tube was sealed and heated to 50°C for 2 h before another AgOTf (2 mol%) and ligand (2.4 mol%) mixed in DCM were added. The reaction was carried out at 50°C... [Pg.125]

Axially chiral biaryls are an important class of molecules for both biologically active compounds and chiral ligands (78-80). The most common approach to obtain biaryls is by aryl coupling followed by resolution of the racemic product to afford enantiopure biaryls. Even though enantioselective partial intramolecular cyclotrimerization of diyne with alkynes (81,82) or nitriles (83) were developed with various transitional metals, it was difficult to carry out complete intermolecular reaction. Using a cationic chiral rhodium complex as catalyst, a regioselective intermolecular cross-cyclotrimerization of alkynes 72 and 73 for... [Pg.832]

Additionally, several nickel-catalyzed systems for pyridines synthesis have also been developed by Louie and coworkers. In 2005, they reported that with Ni(COD)2 as the catalyst and carbene as the ligand, the cyclization can be carried out at room temperature (Scheme 3.23a) [51]. Both intramolecular and intermolecular reactions were proceeded well and the cycloaddition of an asymmetrical diyne afforded a single pyridine regioisomer. This catalytic system was extended to cyanamides as well [52], In their systematic studies, they found the in situ formed dimeric [Ni(IPr)RCN]2 from the reaction of Ni(COD)2, IPr, and nitrile are catalytically competent in the formation of pyridines from the cycloaddition of diynes and nitriles. X-ray analysis revealed that these species display simultaneous f- and 17 -nitrile binding modes. Kinetic... [Pg.35]

In 2004, Molander et al. developed another type of chiral sulfur-containing ligands for the intermolecular Heck reaction. Thus, their corresponding novel cyclopropane-based phosphorus/sulfur palladium complexes proved to be active as catalysts for the reaction between phenyltriflate and dihydrofuran, providing at high temperature a mixture of the expected product and its iso-merised analogue (Scheme 7.7). The major isomer C was obtained with a maximum enantioseleetivity of 63% ee. [Pg.239]

One of the first enantioselective transition metal-catalyzed domino reactions in natural product synthesis leading to vitamin E (0-23) was developed by Tietze and coworkers (Scheme 0.7) [18]. This transformation is based on a Pdn-catalyzed addition of a phenolic hydroxyl group to a C-C-double bond in 0-20 in the presence of the chiral ligand 0-24, followed by an intermolecular addition of the formed Pd-spe-cies to another double bond. [Pg.5]

Sargeson and his coworkers have developed an area of cobalt(III) coordination chemistry which has enabled the synthesis of complicated multidentate ligands directly around the metal. The basis for all of this chemistry is the high stability of cobalt(III) ammine complexes towards dissociation. Consequently, a coordinated ammonia molecule can be deprotonated with base to produce a coordinated amine anion (or amide anion) which functions as a powerful nucleophile. Such a species can attack carbonyl groups, either in intramolecular or intermolecular processes. Similar reactions can be performed by coordinated primary or secondary amines after deprotonation. The resulting imines coordinated to cobalt(III) show unusually high stability towards hydrolysis, but are reactive towards carbon nucleophiles. While the cobalt(III) ion produces some iminium character, it occupies the normal site of protonation and is attached to the nitrogen atom by a kinetically inert bond, and thus resists hydrolysis. [Pg.185]

As noted in the introduction, in contrast to attack by nucleophiles, attack of electrophiles on saturated alkene-, polyene- or polyenyl-metal complexes creates special problems in that normally unstable 16-electron, unsaturated species are formed. To be isolated, these species must be stabilized by intramolecular coordination or via intermolecular addition of a ligand. Nevertheless, as illustrated in this chapter, reactions of significant synthetic utility can be developed with attention to these points. It is likely that this area will see considerable development in the future. In addition to refinement of electrophilic reactions of metal-diene complexes, synthetic applications may evolve from the coupling of carbon electrophiles with electron-rich transition metal complexes of alkenes, alkynes and polyenes, as well as allyl- and dienyl-metal complexes. Sequential addition of electrophiles followed by nucleophiles is also viable to rapidly assemble complex structures. [Pg.712]

As we considered above, one of the fundamental problems associated with the preparation of macrocyclic ligands is concerned with the orientation of reactive sites such that they give intramolecular (cyclic) rather than intermolecular (acyclic) products. This is associated with the conformation of the reactants and the reactive sites, and so we might expect that judicious location of donor atoms might allow for metal ion control over such a cyclisation process. This is known as a template synthesis, and the metal ion may be viewed as a template about which the macrocyclic product is formed. This methodology was first developed in the 1960s, and has been very widely investigated since that time. At the present, template reactions usually prove to be the method of choice for the synthesis of many macrocyclic complexes (with the possible exceptions of those of crown ethers and tetraazaalkanes). When the reactions are successful, they provide an extremely convenient method of synthesis. [Pg.138]

Highly efficient asymmetric intermolecular Pauson-Khand reactions have been developed by using the chiral phosphine ligand (/ )-(+)-g yphos and N-methylmorpholine A-oxide as a promoter (see Section II,C).178... [Pg.117]

Considerable efforts have been made to develop asymmetrical variants of the classical Pauson-Khand reaction. Initial investigations have shown that compounds derived from cobalt complexes of type 1, in which a carbonyl ligand is replaced by a chiral phosphane (glyphos), react with high enantioselectivity [22], However, the procedure is too complex to be of preparative value. The concept of Kerr et al., who achieved significant enantioselectivities (max. 44 % ee) in intermolecular Pauson-Khand reactions by... [Pg.118]


See other pages where Intermolecular reactions ligand development is mentioned: [Pg.224]    [Pg.158]    [Pg.144]    [Pg.46]    [Pg.386]    [Pg.144]    [Pg.379]    [Pg.161]    [Pg.1283]    [Pg.103]    [Pg.473]    [Pg.8]    [Pg.323]    [Pg.847]    [Pg.865]    [Pg.93]    [Pg.1283]    [Pg.101]    [Pg.224]    [Pg.36]    [Pg.341]    [Pg.211]    [Pg.329]    [Pg.344]    [Pg.54]    [Pg.657]    [Pg.676]    [Pg.310]    [Pg.699]    [Pg.341]    [Pg.684]    [Pg.3]    [Pg.141]    [Pg.116]    [Pg.192]    [Pg.262]    [Pg.699]   
See also in sourсe #XX -- [ Pg.1306 , Pg.1309 ]




SEARCH



Ligand development

© 2024 chempedia.info