Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interferences combination

Multiplying one of the two H atom orbitals by —1 is required for constructive interference combination with two + signs leads to destruction interference. [Pg.1018]

Interference Combination of two or more coherent beams of light that leads to the reinforcement of intensity where wave crests overlap and the cancellation of intensity at locations where wave crests overlap with wave troughs. [Pg.206]

Figure Al.6.31. Multiple pathway interference interpretation of pump-dump control. Since each of the pair of pulses contains many frequency components, there are an infinite number of combination frequencies which lead to the same fmal energy state, which generally interfere. The time delay between the pump and... Figure Al.6.31. Multiple pathway interference interpretation of pump-dump control. Since each of the pair of pulses contains many frequency components, there are an infinite number of combination frequencies which lead to the same fmal energy state, which generally interfere. The time delay between the pump and...
Table 81.21.1. Surface stmctural detemiination methods. The second colunni indicates whether a technique can be considered a diffraction method, in the sense of relying on wave interference. Also shown are statistics of surface stmctural detemiinations, extracted from the Surface Stmcture Database [14], up to 1997. Counted here are only detailed and complete stmctural determinations, in which typically the experiment is simulated computationally and atomic positions are fitted to experiment. (Some stmctural detemiinations are perfomied by combining two or more methods those are counted more than once in this table, so that the colunnis add up to more than the actual 1113 stmctural detemiinations included in the database.)... Table 81.21.1. Surface stmctural detemiination methods. The second colunni indicates whether a technique can be considered a diffraction method, in the sense of relying on wave interference. Also shown are statistics of surface stmctural detemiinations, extracted from the Surface Stmcture Database [14], up to 1997. Counted here are only detailed and complete stmctural determinations, in which typically the experiment is simulated computationally and atomic positions are fitted to experiment. (Some stmctural detemiinations are perfomied by combining two or more methods those are counted more than once in this table, so that the colunnis add up to more than the actual 1113 stmctural detemiinations included in the database.)...
Valence bond and molecular orbital theory both incorporate the wave description of an atom s electrons into this picture of H2 but m somewhat different ways Both assume that electron waves behave like more familiar waves such as sound and light waves One important property of waves is called interference m physics Constructive interference occurs when two waves combine so as to reinforce each other (m phase) destructive interference occurs when they oppose each other (out of phase) (Figure 2 2) Recall from Section 1 1 that electron waves m atoms are characterized by their wave function which is the same as an orbital For an electron m the most stable state of a hydrogen atom for example this state is defined by the Is wave function and is often called the Is orbital The valence bond model bases the connection between two atoms on the overlap between half filled orbifals of fhe fwo afoms The molecular orbital model assembles a sef of molecular orbifals by combining fhe afomic orbifals of all of fhe atoms m fhe molecule... [Pg.59]

FIGURE 2 2 Interference between waves (a) Constructive interference occurs when two waves combine in phase with each other The amplitude of the resulting wave at each point is the sum of the amplitudes of the original waves (b) Destructive interference decreases the amplitude when two waves are out of phase with each other... [Pg.59]

The characteristic feature of valence bond theory is that it pictures a covalent bond between two atoms in terms of an m phase overlap of a half filled orbital of one atom with a half filled orbital of the other illustrated for the case of H2 m Figure 2 3 Two hydrogen atoms each containing an electron m a Is orbital combine so that their orbitals overlap to give a new orbital associated with both of them In phase orbital overlap (con structive interference) increases the probability of finding an electron m the region between the two nuclei where it feels the attractive force of both of them... [Pg.60]

Furthermore, the extent to which we can effect a separation depends on the distribution ratio of each species in the sample. To separate an analyte from its matrix, its distribution ratio must be significantly greater than that for all other components in the matrix. When the analyte s distribution ratio is similar to that of another species, then a separation becomes impossible. For example, let s assume that an analyte. A, and a matrix interferent, I, have distribution ratios of 5 and 0.5, respectively. In an attempt to separate the analyte from its matrix, a simple liquid-liquid extraction is carried out using equal volumes of sample and a suitable extraction solvent. Following the treatment outlined in Chapter 7, it is easy to show that a single extraction removes approximately 83% of the analyte and 33% of the interferent. Although it is possible to remove 99% of A with three extractions, 70% of I is also removed. In fact, there is no practical combination of number of extractions or volume ratio of sample and extracting phases that produce an acceptable separation of the analyte and interferent by a simple liquid-liquid extraction. [Pg.544]

The nebulization concept has been known for many years and is commonly used in hair and paint spays and similar devices. Greater control is needed to introduce a sample to an ICP instrument. For example, if the highest sensitivities of detection are to be maintained, most of the sample solution should enter the flame and not be lost beforehand. The range of droplet sizes should be as small as possible, preferably on the order of a few micrometers in diameter. Large droplets contain a lot of solvent that, if evaporated inside the plasma itself, leads to instability in the flame, with concomitant variations in instrument sensitivity. Sometimes the flame can even be snuffed out by the amount of solvent present because of interference with the basic mechanism of flame propagation. For these reasons, nebulizers for use in ICP mass spectrometry usually combine a means of desolvating the initial spray of droplets so that they shrink to a smaller, more uniform size or sometimes even into small particles of solid matter (particulates). [Pg.106]

In (a), two photon waves combine to give a new waveform, which has the same appearance and frequency as the initial separate waves. The photons are said to be coherent, and the amplitude of the waves (light intensity) is simply doubled. In (b), the two photon waves are shown out of step in time (incoherent). Addition of the two waveforms does not lead to a doubling of amplitude, and the new waveform is more complex, composed of a doubled overlapping frequency. In (c), the two waveforms are completely out of step (out of phase) and completely cancel each other, producing darkness rather than light (an interference phenomenon). [Pg.121]

Because the higher alcohols are made by a number of processes and from different raw materials, analytical procedures are designed to yield three kinds of information the carbon chain length distribution, or combining weight, of the alcohols present the purity of the material and the presence of minor impurities and contaminants that would interfere with subsequent use of the product. Analytical methods and characterization of alcohols have been summarized (13). [Pg.443]

In contrast to dyes, fluorescent whiteners are not appHed exclusively in special processes, but often in combination with bleaching and finishing steps. Fluorescent whiteners used in such processes must be stable and should not interfere with the operation. [Pg.119]

The influences of herbicides on cell division fall into two classes, ie, dismption of the mitotic sequence and inhibition of mitotic entry from interphase (G, S, G2). If ceU-cycle analyses indicate increases in abnormal mitotic figures, combined with decreases in one or more of the normal mitotic stages, the effect is upon mitosis. Mitotic effects usually involve the microtubules of the spindle apparatus in the form of spindle depolymerization, blocked tubulin synthesis, or inhibited microtubule polymerization (163). Alkaloids such as colchicine [64-86-8J,viahla.stiae [865-21-4] and vincristine [57-22-7] dismpt microtubule function (164). Colchicine prevents microtubule formation and promotes disassembly of those already present. Vinblastine and vincristine also bind to free tubulin molecules, precipitating crystalline tubulin in the cytoplasm. The capacities of these dmgs to interfere with mitotic spindles, blocking cell division, makes them useful in cancer treatment. [Pg.46]

The biochemical basis for the toxicity of mercury and mercury compounds results from its ability to form covalent bonds readily with sulfur. Prior to reaction with sulfur, however, the mercury must be metabolized to the divalent cation. When the sulfur is in the form of a sulfhydryl (— SH) group, divalent mercury replaces the hydrogen atom to form mercaptides, X—Hg— SR and Hg(SR)2, where X is an electronegative radical and R is protein (36). Sulfhydryl compounds are called mercaptans because of their ability to capture mercury. Even in low concentrations divalent mercury is capable of inactivating sulfhydryl enzymes and thus causes interference with cellular metaboHsm and function (31—34). Mercury also combines with other ligands of physiological importance such as phosphoryl, carboxyl, amide, and amine groups. It is unclear whether these latter interactions contribute to its toxicity (31,36). [Pg.109]

The crystallinity can be dismpted by substituents on the chains that interfere with the alignment process. Amorphous nylons are produced by deUberately engineering this effect, eg, nylon-NDT/INDT (also known as PA-6-3-T or PA-TMDT), which uses trimethyl-substituted hexamethylenediamine isomers combined with terephthaUc acid. [Pg.267]

In reahty the chemistry of breakpoint chlorination is much more complex and has been modeled by computer (21). Conversion of NH/ to monochloramine is rapid and causes an essentially linear increase in CAC with chlorine dosage. Further addition of chlorine results in formation of unstable dichloramine which decomposes to N2 thereby causing a reduction in CAC (22). At breakpoint, the process is essentially complete, and further addition of chlorine causes an equivalent linear increase in free available chlorine. Small concentrations of combined chlorine remaining beyond breakpoint are due primarily to organic chloramines. Breakpoint occurs slightly above the theoretical C1 N ratio (1.75 vs 1.5) because of competitive oxidation of NH/ to nitrate ion. Organic matter consumes chlorine and its oxidation also increases the breakpoint chlorine demand. Cyanuric acid does not interfere with breakpoint chlorination (23). [Pg.298]

Bredinin, Neosidomycin, and SF-2140. Bredinin (62), isolated from the culture filtrates of Eupenicillium brefeldianum (1,4), inhibits the multiplication of L5178Y, HeLa S3, RK-13, mouse L-ceUs, and Chinese hamster cells. GMP can reverse the inhibition by (62), but (62) is not incorporated into the nucleic acids. The inhibition of nucleic acid synthesis and chromosomal damage in the S and G 2 phases that is caused by (62), is reversed by GMP. It blocks the conversion of IMP to XMP and XMP to GMP. In combination with GMP, (62) interferes with intracellular cAMP levels and thereby inhibits cell division. [Pg.124]


See other pages where Interferences combination is mentioned: [Pg.432]    [Pg.158]    [Pg.432]    [Pg.158]    [Pg.97]    [Pg.297]    [Pg.1207]    [Pg.1629]    [Pg.2488]    [Pg.396]    [Pg.420]    [Pg.521]    [Pg.543]    [Pg.435]    [Pg.291]    [Pg.339]    [Pg.49]    [Pg.157]    [Pg.159]    [Pg.160]    [Pg.196]    [Pg.14]    [Pg.276]    [Pg.140]    [Pg.447]    [Pg.498]    [Pg.503]    [Pg.447]    [Pg.16]    [Pg.262]    [Pg.315]    [Pg.162]    [Pg.392]    [Pg.148]    [Pg.165]    [Pg.416]   
See also in sourсe #XX -- [ Pg.33 ]




SEARCH



© 2024 chempedia.info