Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interfaces in microemulsions

G. Gompper, M. Schick. Scattering from internal interfaces in microemulsion and sponge phases. Phys Rev E 49 1478-1482, 1994. [Pg.740]

The curvature of the oil-water interface in microemulsions varies from highly curved towards oil (o/w) or water (w/o) to zero mean curvature in bicontinuous... [Pg.1563]

Let us now discuss some applications of microemulsions in catalytic processes. It has been shown in [298] that the use of microemulsions instead of organic solvents for electrochemical reactions is advantageous from both economical and ecological reasons. The electrode/fluid interface in microemulsions probably consists of a dynamic layer of surfactant molecules packed more loosely on the electrode than in aqueous solutions. Microemulsions provide good yields of carbon-carbon addition products in reactions catalysed by cobalt complexes when preparing vitamin B 2. Excellent stereo-selective control in microemulsions made with the cationic surfactant cetyl trimethyl ammonium bromide was demonstrated for the catalytic cyclisation of 2-(4-bromobutyl)-2-cycIohexene-l-one to 1-decalone. Electrochemical synthesis may be a viable future approach to environmentally friendly chemical methods. [Pg.592]

Kunieda, H., and Yamagata, M. (1993) Mixing of nonionic surfactants at water-oil interfaces in microemulsions. Langmuir, 9, 3345-3351. [Pg.302]

Figure 9.16. Interfacial molar composition. A, versus the initial weight percentage of lindane in the oil for a water-(cyclohexane - - lindane)-C6E5 microemulsion with a zero average curvature. This curve represents the adsorption of lindane at the interface in microemulsions with a constant zero average curvature... Figure 9.16. Interfacial molar composition. A, versus the initial weight percentage of lindane in the oil for a water-(cyclohexane - - lindane)-C6E5 microemulsion with a zero average curvature. This curve represents the adsorption of lindane at the interface in microemulsions with a constant zero average curvature...
Potential determining salts, also referred to as phase transfer agents for a future objective of electrochemistry at the oil-water interface in microemulsions are considered. Reasearchers have studied these salts, composed of a hydrophilic and a hydrophobic ion, in microemulsion stabilized by nonionic surfactants with an oligo ethylene oxide head-group. NMR measurements show that the salts preferentially dissoc. across the surfactant interface between the oil and water domains, and hence create a potential drop across the surfactant film, and back to back diffuse double layers in the oil and water phases. These observations are also supported by Poisson-Boltzmann calcns. ... [Pg.510]

Having determined the effect of the diffusive interfaces on the structure parameters, we now turn to the calculation of H and K in microemulsions. In the case of oil-water symmetry three-point correlation functions vanish and = 0. In order to calculate K from (77) and (83) we need the exphcit expressions for the four-point correlation functions. In the Gaussian approximation... [Pg.734]

The ITIES with an adsorbed monolayer of surfactant has been studied as a model system of the interface between microphases in a bicontinuous microemulsion [39]. This latter system has important applications in electrochemical synthesis and catalysis [88-92]. Quantitative measurements of the kinetics of electrochemical processes in microemulsions are difficult to perform directly, due to uncertainties in the area over which the organic and aqueous reactants contact. The SECM feedback mode allowed the rate of catalytic reduction of tra 5-l,2-dibromocyclohexane in benzonitrile by the Co(I) form of vitamin B12, generated electrochemically in an aqueous phase to be measured as a function of interfacial potential drop and adsorbed surfactants [39]. It was found that the reaction at the ITIES could not be interpreted as a simple second-order process. In the absence of surfactant at the ITIES the overall rate of the interfacial reaction was virtually independent of the potential drop across the interface and a similar rate constant was obtained when a cationic surfactant (didodecyldimethylammonium bromide) was adsorbed at the ITIES. In contrast a threefold decrease in the rate constant was observed when an anionic surfactant (dihexadecyl phosphate) was used. [Pg.321]

The rate of metal complex formation is often modified (usually enhanced) by the presence of a charged interface in the aqueous phase. This may be provided by ionic micelles, e. g., SDS, microemulsions or polyelectrolytes. jjjg reactions of Ni + and Co with hydrophobic ligands pan, pap and pad 14-16 are popular ones for examining effects, since they are well characterized in the bulk water. The simple model (4.126)... [Pg.244]

Eastoe J, Warne B (1996) Nanoparticle and polymer synthesis in microemulsions. Cim-rent Opinion in Colloid Interface Science 1 (6), 800-805... [Pg.225]

This effect can be of great importance, because it is susceptible to considerable alteration of the surfactant interaction between oil and water, and the solubilization in microemulsion (as in the so-called lipophilic and hydrophihc linker mechanisms). The role of the linker molecules is to extend the reach of the surfactant in the bulk phase and in practice to somehow modify the oil and water phases close to the interface, so that their characteristic parameters are altered [66-69]. [Pg.101]

Silica particles synthesized in nonionic w/o microemulsions (e.g., poly-oxythylene alkyl phenyl ether/alkane/water) typically have a narrow size distribution with the average value between 25 and 75 nm [54,55]. Both water and surfactant are necessary components for the formation of stable silica suspensions in microemulsions. The amounts of each phase present in the micro emulsion system has an influence on the resulting size of the silica nanoparticle. The role of residual water (that is the water that is present in the interface between the silica particle and the surfactant) is considered important in providing stability to the silica nanoparticle in the oil... [Pg.196]

Lopez-Quintela MA (2003) Synthesis of nanomaterials in microemulsions formation mechanisms and growth control. Curr Opin Colloid Interface Sci 8 137-144 Lopez-Quintela MA, Tojo C, Blanco MC, Rio LG, Leis JR (2004) Microemulsion dynamics and reactions in microemulsions. Curr Opin Colloid Interface Sci 9 264-278 Maitra A (1984) Determination of Size Parameters of Water Aerosol Ot Oil Reverse Micelles from Their Nuclear Magnetic-Resonance Data. J Phys Chem 88 5122-5125... [Pg.221]

Tween 85 is used extensively for RME [84]. Russell and coworkers [234] used Tween 85/isopropanol microemulsions in hexane to solubilize proteins and not only showed >80% solubilization of cytochrome C at optimum conditions, but also proved that Tween 85 does not have a detrimental effect on the structure, function, and stability of subtilisin and cytochrome C. There are other reports available on the extraction and purification of proteins using Tween 85-RMs and also on the stability of protein activity in these systems [234]. It has also been shown that Tween 85-RMs can solubilize larger amounts of protein and water than AOT. Tween 85 has an HLB of 11, which indicates that it is soluble in organic solvents. In addition, it is biodegradable and can be successfully used as an additive in fertihzers [235,236]. Pfammatter et al. [35] have demonstrated that RMs made of Tween 85 and Span 80 can be successfully used for the solubilization and growth of whole cells. Recently, Hossain et al. [84] showed an enhanced enzymatic activity of Chromobacterium viscosum Hpase in AOT/Tween 85 mixed reverse micellar systems when compared to that in classical AOT-RMs. This is due to the modification of the interface in AOT-RMs caused by the co-adsorption of Tween 85, and increased availability of the oHve oil molecules (substrate) to the enzyme. [Pg.163]

Surfactants form semiflexible elastic films at interfaces. In general, the Gibbs free energy of a surfactant film depends on its curvature. Here we are not talking about the indirect effect of the Laplace pressure but a real mechanical effect. In fact, the interfacial tension of most microemulsions is very small so that the Laplace pressure is low. Since the curvature plays such an important role, it is useful to introduce two parameters, the principal curvatures... [Pg.269]

Unlike micelles, an emulsion is a liquid system in which one liquid is dispersed in a second, immiscible liquid, usually in droplets, with emulsiLers added to stabilize the dispersed system. Conventional emulsions possess droplet diameters of more than 200 nm, and are therefore optically opaque or milky. Conventional emulsions are thermodynamically unstable, tending to reduce their total free energy by reducing the total area of the two-phase interface. In contrast, microemulsions with droplet diameters less than 100 nm are optically clear and thermodynamically stable. Unlike conventional emulsions that require the input of a substantial amount of energy, microemulsions are easy to prepare and form spontaneously on mixing, with little or no mechanical energy applied (Lawrence and Rees, 2000). [Pg.121]

Emulsions are two-phase systems formed from oil and water by the dispersion of one liquid (the internal phase) into the other (the external phase) and stabilized by at least one surfactant. Microemulsion, contrary to submicron emulsion (SME) or nanoemulsion, is a term used for a thermodynamically stable system characterized by a droplet size in the low nanorange (generally less than 30 nm). Microemulsions are also two-phase systems prepared from water, oil, and surfactant, but a cosurfactant is usually needed. These systems are prepared by a spontaneous process of self-emulsification with no input of external energy. Microemulsions are better described by the bicontinuous model consisting of a system in which water and oil are separated by an interfacial layer with significantly increased interface area. Consequently, more surfactant is needed for the preparation of microemulsion (around 10% compared with 0.1% for emulsions). Therefore, the nonionic-surfactants are preferred over the more toxic ionic surfactants. Cosurfactants in microemulsions are required to achieve very low interfacial tensions that allow self-emulsification and thermodynamic stability. Moreover, cosurfactants are essential for lowering the rigidity and the viscosity of the interfacial film and are responsible for the optical transparency of microemulsions [136]. [Pg.511]

Instability of the Spherical Internal Interface in Single Phase Microemulsions... [Pg.255]

Figure 6. Thicknesses of the interfacial layers of droplets (circles) and areas per surfactant molecule of the droplets at an oil-water interface (squares) as functions of the volume ratios of alcohol to surfactant in microemulsions for systems containing O/W (filled symbols) and W/O (open symbols) droplets. All the system characteristics are identical to those described for Figure 3. Figure 6. Thicknesses of the interfacial layers of droplets (circles) and areas per surfactant molecule of the droplets at an oil-water interface (squares) as functions of the volume ratios of alcohol to surfactant in microemulsions for systems containing O/W (filled symbols) and W/O (open symbols) droplets. All the system characteristics are identical to those described for Figure 3.
Figure 13. Interfacial tension at the oil -water interface in a bicontinuous inicroemulsion system (filled squares) as a function of the volume fraction of oil in the microemulsion. In all cases, the volume fraction of surfactant is 0.01. The system consists of SDS, 1-pentanol, cyclohexane, water, and 0.3 M NaCl. Also shown are the interfacial tensions at the flat surface between the O/W droplet microemulsion phase and the excess oil phase (filled circles) and between the W/O droplet microemulsion phase and excess water phase (open circles) in two-phase systems. Figure 13. Interfacial tension at the oil -water interface in a bicontinuous inicroemulsion system (filled squares) as a function of the volume fraction of oil in the microemulsion. In all cases, the volume fraction of surfactant is 0.01. The system consists of SDS, 1-pentanol, cyclohexane, water, and 0.3 M NaCl. Also shown are the interfacial tensions at the flat surface between the O/W droplet microemulsion phase and the excess oil phase (filled circles) and between the W/O droplet microemulsion phase and excess water phase (open circles) in two-phase systems.
An interesting example of a specific ion effect in microemulsions is a strong increase in reactivity found for large, polarizable anions such as iodide. The tendency for such ions to interact with, and accumulate at, the interface can be taken advantage of for preparative purposes. The increased concentration of such ions in the interfacial zone, where the reaction takes place, will lead to an increase in reaction rate. Expressed differently, the reactivity of iodide and other highly polarizable ions [62, 63] will be very high in such systems. The microemulsions need not be based on cationic surfactants that would drive the anions to the interface by electrostatic attraction. Also microemulsions based on nonionic surfactants display the effect because large, polarizable anions interact... [Pg.68]

To synthesize water-soluble or swellable copolymers, inverse heterophase polymerization processes are of special interest. The inverse macroemulsion polymerization is only reported for the copolymerization of two hydrophilic monomers. Hernandez-Barajas and Hunkeler [62] investigated the copolymerization of AAm with quaternary ammonium cationic monomers in the presence of block copoly-meric surfactants by batch and semi-batch inverse emulsion copolymerization. Glukhikh et al. [63] reported the copolymerization of AAm and methacrylic acid using an inverse emulsion system. Amphiphilic copolymers from inverse systems are also successfully obtained in microemulsion polymerization. For example, Vaskova et al. [64-66] copolymerized the hydrophilic AAm with more hydrophobic methyl methacrylate (MMA) or styrene in a water-in-oil microemulsion initiated by radical initiators with different solubilities in water. However, not only copolymer, but also homopolymer was formed. The total conversion of MMA was rather limited (<10%) and the composition of the copolymer was almost independent of the comonomer ratio. This was probably due to a constant molar ratio of the monomers in the water phase or at the interface as the possible locus of polymerization. Also, in the case of styrene copolymerizing with AAm, the molar fraction of AAm in homopolymer compared to copolymer is about 45-55 wt% [67], which is still too high for a meaningful technical application. [Pg.49]

A third type of emulsion process is the so-called microemulsion [123]. In microemulsions, the polymerization starts in droplets as well. However, these are thermodynamically stable and, in contrast to miniemulsions, they form spontaneously by gentle stirring. They consist of large amounts of surfactants or mixtures of them, and they possess an interfacial tension close to zero at the water/oil interface, with droplet sizes usually ranging between 5 and 50 nm. In... [Pg.160]

Figure 20B. At 71 days the internal interface in Fig. 3 had disappeared and all the W/0 microemulsion compositions were now within the solubility region (1-5, 71 days), but the birefringent layer still persisted (Fig. 3) and layers 6 and 7 were still outside the solubility limit. Figure 20B. At 71 days the internal interface in Fig. 3 had disappeared and all the W/0 microemulsion compositions were now within the solubility region (1-5, 71 days), but the birefringent layer still persisted (Fig. 3) and layers 6 and 7 were still outside the solubility limit.
This model calculation illustrates a recurring theme in this book the notion of an intrinsically preferred curvature implies profound consequences for structure. The analysis of mesostructure of these microemulsions is helped by the fact that DDAB resides exclusively at the interface. In many microemulsions this is not the case, so that more detailed calculations are... [Pg.175]


See other pages where Interfaces in microemulsions is mentioned: [Pg.152]    [Pg.1388]    [Pg.152]    [Pg.1388]    [Pg.2589]    [Pg.2597]    [Pg.731]    [Pg.46]    [Pg.283]    [Pg.625]    [Pg.9]    [Pg.231]    [Pg.190]    [Pg.193]    [Pg.122]    [Pg.344]    [Pg.249]    [Pg.54]    [Pg.67]    [Pg.69]    [Pg.70]    [Pg.49]    [Pg.99]    [Pg.65]    [Pg.1061]    [Pg.12]   
See also in sourсe #XX -- [ Pg.247 ]




SEARCH



Interface microemulsions

© 2024 chempedia.info