Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interface metal/film/solution

The reorganization free energy is usually split in two parts. The local mode contribution is obtained in standard routines which require local potentials (say harmonic potentials) and vibrational frequencies in the reactants and products states. The collective modes associated with the proteins and the solvent, however, pose complications. One complication arises because classical electrostatics needs modification when the spatial extension of the electric field and charge distributions are comparable with the local structure extensions of the environment. Other complications are associated with the presence of interfaces such as metal/solution, protein/solution, and metal/film/solution interfaces. These issues are only partly resolved, say by nonlocal dielectric theory and dielectric theory of anisotropic media. [Pg.256]

Let us imagine a piece of silver with an AgCl film to be immersed in a Cl solution. Two phase boundaries will form, one between the metal and the film and the other between the film and the solution. The interface metal/film is permeable for Ag but not for CP ions or electrons. It is impermeable to CP ions because they cannot be inserted into the metal lattice and electrons cannot pass through because silver chloride does not conduct electrons. Therefore, a Galvani potential difference will form there that is determined only by the chemical potentials of the Ag" ions in both phases. These are fixed values, so the Galvani potential difference will also have a fixed value. The interface film/solution is permeable to both CP and Ag" so that Ag and CP ions compete to set the Galvani potential difference. However, free Ag ions in a CP solution can only be present in extremely low concentrations, so they are hopelessly outnumbered by the CP ions. This is why only the CP ions determine the potential difference at this interface. [Pg.541]

Oxygen from the atmosphere, dissolved in the electrolyte solution provides the cathode reactant in the corrosion process. Since the electrolyte solution is in the form of thin films or droplets, diffusion of oxygen from the atmosphere/electrolyte solution interface to the solution/metal interface is rapid. Moreover, convection currents within these thin films of solution may play a part in further decreasing concentration polarisation of this cathodic process . Oxygen may also oxidise soluble corrosion products to less soluble ones which form more or less protective barriers to further corrosion, e.g. the oxidation of ferrous species to the less soluble ferric forms in the rusting of iron and steel. [Pg.338]

Some emphasis has been placed inthis Section on the nature of theel trified interface since it is apparent that adsorption at the interface between the metal and solution is a precursor to the electrochemical reactions that constitute corrosion in aqueous solution. The majority of studies of adsorption have been carried out using a mercury electrode (determination of surface tension us. potential, impedance us. potential, etc.) and this has lead to a grater understanding of the nature of the electrihed interface and of the forces that are responsible for adsorption of anions and cations from solution. Unfortunately, it is more difficult to study adsorption on clean solid metal surfaces (e.g. platinum), and the situation is even more complicated when the surface of the metal is filmed with solid oxide. Nevertheless, information obtained with the mercury electrode can be used to provide a qualitative interpretation of adsorption phenomenon in the corrosion of metals, and in order to emphasise the importance of adsorption phenomena some examples are outlined below. [Pg.1188]

Then the diffusion equation for the fluctuation of the metal ion concentration is given by Eq. (68), and the mass balance at the film/solution interface is expressed by Eq. (69). These fluctuation equations are also solved with the same boundary condition as shown in Eq. (70). [Pg.274]

Anodic oxidation often involves the formation of films on the surface, i.e. of a solid phase formed of salts or complexes of the metals with solution components. They often appear in the potential region where the electrode, covered with the oxidation product, can function as an electrode of the second kind. Under these conditions the films are thermodynamically stable. On the other hand, films are sometimes formed which in view of their solubility product and the pH of the solution should not be stable. These films are stabilized by their structure or by the influence of surface forces at the interface. [Pg.388]

Continuous (barrier, passivation) films have a high resistivity (106Q cm or more), with a maximum thickness of 10 4cm. During their formation, the metal cation does not enter the solution, but rather oxidation occurs at the metal-film interface. Oxide films at tantalum, zirconium, aluminium and niobium are examples of these films. [Pg.388]

Most microhotplate-based chemical sensors have been realized as multi-chip solutions with separate transducer and electronics chips. One example includes a gas sensor based on a thin metal film [16]. Another example is a hybrid sensor system comprising a tin-oxide-coated microhotplate, an alcohol sensor, a humidity sensor and a corresponding ASIC chip (Application Specific Integrated Circuit) [17]. More recent developments include an interface-circuit chip for metal oxide gas sensors and the conccept for an on-chip driving circuitry architecture of a gas sensor array [18,19]. [Pg.10]

We examine an electron transfer of hydrated redox particles (outer-sphere electron transfer) on metal electrodes covered with a thick film, as shown in Fig. 8-41, with an electron-depleted space charge layer on the film side of the film/solution interface and an ohmic contact at the metal/film interface. It appears that no electron transfer may take place at electron levels in the band gap of the film, since the film is sufficiently thick. Instead, electron transfer takes place at electron levels in the conduction and valence bands of the film. [Pg.284]

In the active state, the dissolution of metals proceeds through the anodic transfer of metal ions across the compact electric double layer at the interface between the bare metal and the aqueous solution. In the passive state, the formation of a thin passive oxide film causes the interfadal structure to change from a simple metal/solution interface to a three-phase structure composed of the metal/fUm interface, a thin film layer, and the film/solution interface [Sato, 1976, 1990]. The rate of metal dissolution in the passive state, then, is controlled by the transfer rate of metal ions across the film/solution interface (the dissolution rate of a passive semiconductor oxide film) this rate is a function of the potential across the film/solution interface. Since the potential across the film/solution interface is constant in the stationary state of the passive oxide film (in the state of band edge level pinning), the rate of the film dissolution is independent of the electrode potential in the range of potential of the passive state. In the transpassive state, however, the potential across the film/solution interface becomes dependent on the electrode potential (in the state of Fermi level pinning), and the dissolution of the thin transpassive film depends on the electrode potential as described in Sec. 11.4.2. [Pg.382]

In the stationary state of anodic dissolution of metals in the passive and transpassive states, the anodic transfer of metallic ions metal ion dissolution) takes place across the film/solution interface, but the anodic transfer of o Q en ions across the Qm/solution interface is in the equilibrium state. In other words, the rate of film formation (the anodic transfer oS metal ions across the metal lm interface combined with anodic transfer of osygen ions across the film/solution interface) equals the rate of film dissolution (the anodic transfer of metal ions across the film/solution interface combined with cathodic transfer of oitygen ions across the film/solution interface). [Pg.383]

Thus, in the stationary state, the rate of anodic transfer of metal ions across the metal/film interface equals the rate of anodic transfer of metal ions across the film/solution interface this rate of metal ion transfer represents the dissolution rate of the passive film. The thickness of the passive film at constant potential remains generally constant with time in the stationary state of dissolution, although the thickness of the film depends on the electrode potential and also on the dissolution current of the passive film. [Pg.383]

In the range of potential of the passive state the passive oxide film is in the state of band edge level pinning at the film/solution interface hence, the potential A( )h across the film/solution interface remains constant irrespective of the electrode potential of the passive metal. With increasing anodic polarization and in the... [Pg.384]

Fig. 11-11. Potential at a film/solution interface and potential dfp in a passive film as a fimction of anodic potential of a passive metal electrode in the stationary state the interface is in the state of band edge level pinning to the extent that the Fermi level e, is within the band gap, but the interface changes to the state of Fermi level pinning as e, coincides with the valence band edge Cy. Fig. 11-11. Potential at a film/solution interface and potential dfp in a passive film as a fimction of anodic potential of a passive metal electrode in the stationary state the interface is in the state of band edge level pinning to the extent that the Fermi level e, is within the band gap, but the interface changes to the state of Fermi level pinning as e, coincides with the valence band edge Cy.
For metallic iron and nickel electrodes, the transpassive dissolution causes no change in the valence of metal ions during anodic transfer of metal ions across the film/solution interface (non-oxidative dissolution). However, there are some metals in which transpassive dissolution proceeds by an oxidative mode of film dissolution (Sefer to Sec. 9.2.). For example, in the case of chromium electrodes, on whidi the passive film is trivalent chromium oxide (CrgOj), the transpassive dissolution proceeds via soluble hexavalent chromate ions. This process can be... [Pg.386]

A more complicated model situation is demanded if one thinks of the equivalent circuit for an electrode covered with an oxide film. One might think of A1 and the protective oxide film that grows upon it during anodic polarization. One has to allow for the resistance of the solution, as before. Then there is an equivalent circuit element to model the metal oxide/solution interface, a capacitance and interfacial resistance in parallel. The electrons that enter the oxide by passing across the interfacial region can be shown to go to certain surface states (Section 6.10.1.8) on the oxide surface, and they must be represented. Finally, on the way to the underlying metal, the electron... [Pg.419]

Dissolution and deposition processes occur uniformly via the surface films and beneath them. Hence, the surface films are sufficiently flexible to follow the changes in the metal-film interface and thus continuously protect the active surface from reactions with the solution species. Such behavior is ideal for rechargeable battery applications (see Figure 5). [Pg.301]

This is the case for magnesium and calcium electrodes whose cations are bivalent. The surface films formed on such metals in a wide variety of polar aprotic systems cannot transport the bivalent cations. Such electrodes are blocked for the metal deposition [28-30], However, anodic processes may occur via the breakdown and repair mechanism. Due to the positive electric field, which is the driving force for the anodic processes, the film may be broken and cracked, allowing metal dissolution. Continuous metal dissolution creates an unstable situation in the metal-film and metal-solution interfaces and prevents the formation of stable passivating films. Thus, once the surface films are broken and a continuous electrical field is applied, continuous metal dissolution may take place at a relatively low overpotential (compared with the high overpotential required for the initial breakdown of the surface films). Typical examples are calcium dissolution processes in several polar aprotic systems [31]. [Pg.303]

The use of galvanostatic transients enabled the measurement of the poten-tiodynamic behavior of Li electrodes in a nearly steady state condition of the Li/film/solution system [21,81], It appeared that Li electrodes behave potentio-dynamically, as predicted by Eqs. (5)—(12), Section III.C a linear, Tafel-like, log i versus T dependence was observed [Eq. (8)], and the Tafel slope [Eq. (10)] could be correlated to the thickness of the surface films (calculated from the overall surface film capacitance [21,81]). From measurements at low overpotentials, /o, and thus the average surface film resistivity, could be measured according to Eq. (11), Section m.C [21,81], Another useful approach is the fast measurement of open circuit potentials of Li electrodes prepared fresh in solution versus a normal Li/Li+ reference electrode [90,91,235], While lithium reference electrodes are usually denoted as Li/Li+, the potential of these electrodes at steady state depends on the metal/film and film/solution interfaces, as well as on the Li+ concentration in both film and solution phases [236], However, since Li electrodes in many solutions reach a steady state stability, their potential may be regarded as quite stable within reasonable time tables (hours —> days, depending on the system s surface chemistry and related aging processes). [Pg.344]

The electrochemical behavior of an Mg electrode in thionyl chloride/ Mg(AlCl4)2 solutions was investigated extensively by Meitav and Peled [426], The Mg electrode in this electrolyte system is covered by MgCl2, which forms a bilayered surface film a compact one close to the metal and a porous one at the film-solution interface. This surface film determines the electrochemical behavior of these systems and can only conduct Cl ions, and thus the mobility of Mg2+ through it is practically zero. Thus, Mg deposition does not occur in this system, and Mg dissolution at a reasonable rate occurs via a breakdown and repair mechanism. Since the active metal is thermodynamically unstable in thionyl chloride when a fresh metal is exposed to solution, it reacts readily with the solvent to form this film. [Pg.386]


See other pages where Interface metal/film/solution is mentioned: [Pg.392]    [Pg.284]    [Pg.201]    [Pg.5925]    [Pg.94]    [Pg.1948]    [Pg.283]    [Pg.106]    [Pg.106]    [Pg.224]    [Pg.145]    [Pg.305]    [Pg.337]    [Pg.237]    [Pg.237]    [Pg.183]    [Pg.776]    [Pg.285]    [Pg.49]    [Pg.193]    [Pg.64]    [Pg.350]    [Pg.106]    [Pg.106]    [Pg.236]    [Pg.234]    [Pg.108]    [Pg.132]    [Pg.494]    [Pg.363]    [Pg.555]   
See also in sourсe #XX -- [ Pg.392 ]




SEARCH



Films metallic

Interface film-solution

Interface metal-film

Interface solution

Metal films

Metal solutions

Metal/solution interface

Solutions metallic

© 2024 chempedia.info