Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Infrared spectroscopy instrumentation

Now we move on to consider the analysis of copolymers. There are usually two things we would like to know. First, the composition of the copolymer and, second, some measure of sequence distributions. Again, in the early years, before the advent of commercial NMR instruments, infrared spectroscopy was the most widely used tool. The problem with the technique is that it requires that the spectrum contain bands that can be unambiguously assigned to specific functional groups, as in the (transmission) spectrum of an acrylonitrile/methyl methacrylate copolymer shown in Figure 7-43 (you can tell this is a really old spectrum, not only because it is plotted in transmission, but also because the frequency scale is in microns). [Pg.197]

The enormous advances and changes in organometallic chemistry since the discovery of ferrocene would not have been possible had there not been a concomitant development of instrumental techniques and widespread availability of instruments. Infrared spectroscopy has long been known, but recent extensions in both theory and instrumentation have greatly expanded its applications. More recently, it has been complemented and supplemented by Raman spectroscopy. Nuclear magnetic resonance (NMR) spectroscopy, particularly for the hydrogen nucleus, has been an extremely important tool much early work is reviewed in the article by Maddox et al. 172). In more recent years, nuclei such as F, °B, and a variety of others have also... [Pg.27]

In addition to covering Raman microscopy, this book has a wealth of information on Raman instrumentation in general. Elving P J and Winefordner J D (eds) 1986 Fourier Transform Infrared Spectroscopy (New York Wiley)... [Pg.1178]

Chapter 12, Structure Determination Mass Spectrometiy and Infrared Spectroscopy—A new Section 12.4 discusses mass spectrometry of biological molecules, focusing on time-of-flight instruments and soft ionization methods such as MAI.DI. [Pg.1337]

Wetzel, D.L.B., Analytical near infrared spectroscopy, in Instrumental Methods In Food and Beverage Analysis, Wetzel, D.L.B. and Charalambous, G., Eds., Elsevier, Amsterdam, 1998. [Pg.527]

Much of the pioneering work which led to the discovery of efficient catalysts for modern Industrial catalytic processes was performed at a time when advanced analytical Instrumentation was not available. Insights Into catalytic phenomena were achieved through gas adsorption, molecular reaction probes, and macroscopic kinetic measurements. Although Sabatier postulated the existence of unstable reaction Intermediates at the turn of this century. It was not until the 1950 s that such species were actually observed on solid surfaces by Elschens and co-workers (2.) using Infrared spectroscopy. Today, scientists have the luxury of using a multitude of sophisticated surface analytical techniques to study catalytic phenomena on a molecular level. Nevertheless, kinetic measurements using chemically specific probe molecules are still the... [Pg.26]

The specific surface area of the fresh and used catalysts was measured by nitrogen adsorption method (Sorptometer 1900, Carlo Erba Instruments). The catalysts were outgassed at 473 K prior to the measurements and the Dubinin equation was used to calculate the specific surface area. The acidity of investigated samples was measured by infrared spectroscopy (ATI Mattson FTIR) by using pyridine (>99.5%, a.r.) as a probe molecule for qualitative and quantitative determination of both Bronstcd and Lewis acid sites (further denoted as BAS and LAS). The amounts of BAS and LAS were calculated from the intensities of corresponding spectral bands by using the molar extinction coefficients reported by Emeis (23). Full details of the acidity measurements are provided elsewhere (22). [Pg.281]

Several additional instrumental techniques have also been developed for bacterial characterization. Capillary electrophoresis of bacteria, which requires little sample preparation,42 is possible because most bacteria act as colloidal particles in suspension and can be separated by their electrical charge. Capillary electrophoresis provides information that may be useful for identification. Flow cytometry also can be used to identify and separate individual cells in a mixture.11,42 Infrared spectroscopy has been used to characterize bacteria caught on transparent filters.113 Fourier-transform infrared (FTIR) spectroscopy, with linear discriminant analysis and artificial neural networks, has been adapted for identifying foodbome bacteria25,113 and pathogenic bacteria in the blood.5... [Pg.12]

In-situ Fourier transform infrared spectroscopy. The final technique in this section concerns the FTIR approach which is based quite simply on the far greater throughput and speed of an FTIR spectrometer compared to a dispersive instrument. In situ FTIR has several acronyms depending on the exact method used. In general, as in the EMIRS technique, the FTIR-... [Pg.111]

The work of Corrigan and Weaver clearly shows the power of in situ FTIR in terms both of the excellent quality of the spectra that can be obtained with relatively uncomplicated instrumentation and of the fact that it points the way ahead for in situ infrared spectroscopy. [Pg.115]

Chemicals used in this study were obtained from Aldrich Chemical Company. 1H NMR spectra were obtained on a Varian EM-360, 13C NMR spectra were obtained on a JEOL-FX-60Q or a GE QE-300. An Analect FX-6200 FT-IR spectrometer was used for infrared spectroscopy and a Hewlett-Packard Model 5980 with a model 5970 mass-selective detector was used for GC-MS. TGA measurements were performed on a Perkin-Elmer TGA-7 instrument. HPLC measurements were obtained using a Waters Instrument. [Pg.179]

Instrumental Methods. Water determinations probably tend to work well on instrumental analysis because water is radically different from other substances. Methods such as NMR and near-infrared spectroscopy are both applied to confectionery products. [Pg.21]

Near-infrared Spectroscopy. Near-infrared spectroscopy (NIRS) uses that part of the electromagnetic spectrum between the visible and the infrared. This region has the advantage that the instrumentation is nearest to visible instrumentation. Signals in the near-infrared come not from the fundamental vibrations of molecules but from overtones. As... [Pg.21]

Topnir Not a chemical process but an instrumental process for on-line monitoring of hydrocarbon process streams by infrared spectroscopy. Developed by BP and offered for license in 1997. [Pg.271]

Infrared spectra, of fats and oils, 10 823 Infrared spectral region, 19 564 Infrared spectroscopy, 14 224-243 23 136-143. See also Chromatography-infrared spectroscopy Far- infrared spectroscopy ir-selective surfaces Ir (infrared) spectroscopy Near- infrared spectroscopy Thermal analysis-infrared spectroscopy applications of, 14 239-240 23 140-141 in composition measurements, 20 682 in fiber optic fabrication, 11 138 industrial applications of, 14 240 instrumentation in, 14 225-228 23 137-138... [Pg.473]

Instrumental resolution, 23 132 Instrumentation. See also Instruments calibration of, 21 161 capillary electrophoresis, 4 633 composition measurement, 11 785 for fermentation, 11 36—40 flow rate, 11 781-783 flow visualization, 11 785-786 fluid mechanics, 11 781-786 food processing, 12 87-88 gas chromatography, 4 611 6 413-414 infrared spectroscopy, 14 225-228 23 137-138... [Pg.479]

The fact that soil always contains water, or more precisely an aqueous solution, is extremely important to keep in mind when carrying out an analytical procedure because water can adversely affect analytical procedures and instrumentation. This can result in an over- or under-determination of the concentrations of components of interest. Deactivation of chromatographic adsorbents and columns and the destruction of sampling tools such as salt windows used in infrared spectroscopy are examples of the potential deleterious effects of water. This can also result in absorbance or overlap of essential analytical bands in various regions of the spectrum. [Pg.13]


See other pages where Infrared spectroscopy instrumentation is mentioned: [Pg.106]    [Pg.416]    [Pg.417]    [Pg.418]    [Pg.244]    [Pg.353]    [Pg.745]    [Pg.864]    [Pg.213]    [Pg.170]    [Pg.177]    [Pg.438]    [Pg.501]    [Pg.315]    [Pg.344]    [Pg.181]    [Pg.529]    [Pg.75]    [Pg.123]    [Pg.371]    [Pg.497]    [Pg.54]    [Pg.127]    [Pg.46]    [Pg.289]    [Pg.217]    [Pg.305]    [Pg.323]    [Pg.908]   
See also in sourсe #XX -- [ Pg.67 ]




SEARCH



Fourier transform infrared spectroscopy instruments

Fourier-transform infrared spectroscopy instrumentation

Infrared Spectroscopy An Instrumental Method for Detecting Functional Groups

Infrared instrumentation

Infrared spectroscopy instrument calibration

Infrared spectroscopy instrumental features

Instrumentation for infrared spectroscopy

Instruments spectroscopy

Near-infrared spectroscopy instrumentation

Spectroscopy instrumentation

Time-resolved infrared spectroscopy instrumental approaches

© 2024 chempedia.info