Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bases. alkyl halides

Section 5 17 In the absence of a strong base alkyl halides eliminate by an El mech anism Rate determining ionization of the alkyl halide to a carbocation is followed by deprotonation of the carbocation... [Pg.223]

Methyl, ethyl, and benzyl ethers have been prepared in the presence of tetraethylammonium fluoride as a Lewis base (alkyl halide, DME, 20°, 3 h, 60-85% yields). ... [Pg.146]

We saw in the preceding chapter that the carbon-ha]ogen bond in an alkyl halide is polar and that the carbon atom is electron-poor. Thus, alkyl halides are electrophiles, and much of their chemistry involves polar reactions with nucleophiles and bases. Alkyl halides do one of two things when they react with a nucleophile/base, such as hydroxide ion either they undergo substitution of the X group by the nucleophile, or they undergo elimination of HX to yield an alkene. [Pg.359]

Section 5.18 In the absence of a strong base, alkyl halides eliminate by an El mechanism. [Pg.219]

N,N,N, N -tetramethyl-l,8,-naph-thalenediamiDe M.P. 51 C. A remarkably strong mono-acidic base (pKg 12-3) which is almost completely non-nucleophilic and valuable for promoting organic elimination reactions (e.g. of alkyl halides to alkenes) without substitution. [Pg.60]

NaOCHjCHa. White solid (Na in EtOH). Decomposed by water, gives ethers with alkyl halides reacts with esters. Used in organic syntheses particularly as a base to remove protons adjacent to carbonyl or sulphonyl groups to give resonance-stabilized anions. [Pg.364]

A wide class of aiyl-based quaternary surfactants derives from heterocycles such as pyridine and quinoline. The Aralkyl pyridinium halides are easily synthesized from alkyl halides, and the paraquat family, based upon the 4, 4 -bipyridine species, provides many interesting surface active species widely studied in electron donor-acceptor processes. Cationic surfactants are not particularly useful as cleansing agents, but they play a widespread role as charge control (antistatic) agents in detergency and in many coating and thin film related products. [Pg.2577]

Esters are alkylated in the presence of strong bases in aprotic solvents. A common combination is LDA in tetrabydrofuran at low temperatures. Equimolar amounts of base are sufficient and only the mono-carbanion Js formed. After addition of one mole of alkyl halide the products form rapidly, and no dialkylation, which is a problem in the presence of excess base, is possible. Addition of one more mole of LDA and of another alkyl halide leads to asymmetric dialkylation of one or-carbon atom in high yield (R.J. Cregge, 1973). [Pg.22]

Alkyl halides are such useful starting materials for preparing other functional group types that chemists have developed several different methods for converting alcohols to alkyl halides Two methods based on the inorganic reagents thionyl chloride and phosphorus tnbromide bear special mention... [Pg.165]

Phosphorous acid is water soluble and may be removed by washing the alkyl halide with water or with dilute aqueous base... [Pg.166]

Similarly sodium methoxide (NaOCHj) is a suitable base and is used m methyl alco hoi Potassium hydroxide m ethyl alcohol is another base-solvent combination often employed m the dehydrohalogenation of alkyl halides Potassium tert butoxide [K0C(CH3)3] is the preferred base when the alkyl halide is primary it is used m either tert butyl alcohol or dimethyl sulfoxide as solvent... [Pg.212]

The reaction exhibits second order kinetics it is first order in alkyl halide and first order in base... [Pg.214]

Doubling the concentration of either the alkyl halide or the base doubles the reaction rate Doubling the concentration of both reactants increases the rate by a factor of 4... [Pg.214]

The E2 mechanism is followed whenever an alkyl halide—be it primary second ary or tertiary—undergoes elimination m the presence of a strong base... [Pg.215]

The alkyl halide m this case 2 bromo 2 methylbutane ionizes to a carbocation and a halide anion by a heterolytic cleavage of the carbon-halogen bond Like the dissoci ation of an aUcyloxonmm ion to a carbocation this step is rate determining Because the rate determining step is ummolecular—it involves only the alkyl halide and not the base—It is a type of El mechanism... [Pg.218]

Typically elimination by the El mechanism is observed only for tertiary and some secondary alkyl halides and then only when the base is weak or m low con centration Unlike eliminations that follow an E2 pathway and exhibit second order kinetic behavior... [Pg.218]

Like alcohol dehydrations El reactions of alkyl halides can be accompanied by carbocation rearrangements Eliminations by the E2 mechanism on the other hand nor mally proceed without rearrangement Consequently if one wishes to prepare an alkene from an alkyl halide conditions favorable to E2 elimination should be chosen In prac tice this simply means carrying out the reaction m the presence of a strong base... [Pg.219]

Dehydrohalogenation of alkyl halides (Sections 5 14-5 16) Strong bases cause a proton and a halide to be lost from adjacent carbons of an alkyl halide to yield an alkene Regioselectivity is in accord with the Zaitsev rule The order of halide reactivity is I > Br > Cl > F A concerted E2 reaction pathway is followed carbocations are not involved and rearrangements do not occur An anti coplanar arrangement of the proton being removed and the halide being lost characterizes the transition state... [Pg.222]

Section 5 15 Dehydrohalogenation of alkyl halides by alkoxide bases is not compli cated by rearrangements because carbocations are not intermediates The mechanism is E2 It is a concerted process m which the base abstracts a proton from the p carbon while the bond between the halogen and the a carbon undergoes heterolytic cleavage... [Pg.223]

When we discussed elimination reactions in Chapter 5 we learned that a Lewis base can react with an alkyl halide to form an alkene In the present chapter you will find that the same kinds of reactants can also undergo a different reaction one m which the Lewis base acts as a nucleophile to substitute for the halo gen substituent on carbon... [Pg.326]

The Lewis base that acts as the nucleophile often is but need not always be an anion Neutral Lewis bases can also serve as nucleophiles Common examples of substitutions involving neutral nucleophiles include solvolysis reactions Solvolysis reactions are substitutions m which the nucleophile is the solvent m which the reaction is carried out 8olvolysis m water (hydrolysis) converts an alkyl halide to an alcohol... [Pg.336]

As we have seen the nucleophile attacks the substrate m the rate determining step of the Sn2 mechanism it therefore follows that the rate of substitution may vary from nucleophile to nucleophile Just as some alkyl halides are more reactive than others some nucleophiles are more reactive than others Nucleophilic strength or nucleophilicity, is a measure of how fast a Lewis base displaces a leaving group from a suitable substrate By measuring the rate at which various Lewis bases react with methyl iodide m methanol a list of then nucleophihcities relative to methanol as the standard nucleophile has been compiled It is presented m Table 8 4... [Pg.337]

We have seen that an alkyl halide and a Lewis base can react together m either a sub stitution or an elimination reaction... [Pg.348]

Substitution can take place by the S l or the 8 2 mechanism elimination by El or E2 How can we predict whether substitution or elimination will be the principal reac tion observed with a particular combination of reactants The two most important fac tors are the structure of the alkyl halide and the basicity of the anion It is useful to approach the question from the premise that the characteristic reaction of alkyl halides with Lewis bases is elimination and that substitution predominates only under certain special circumstances In a typical reaction a typical secondary alkyl halide such as iso propyl bromide reacts with a typical Lewis base such as sodium ethoxide mainly by elimination... [Pg.348]

Figure 8 11 illustrates the close relationship between the E2 and 8 2 pathways for this case and the results cited m the preceding equation clearly show that E2 is faster than 8 2 when a secondary alkyl halide reacts with a strong base... [Pg.348]


See other pages where Bases. alkyl halides is mentioned: [Pg.223]    [Pg.146]    [Pg.223]    [Pg.146]    [Pg.334]    [Pg.353]    [Pg.127]    [Pg.115]    [Pg.24]    [Pg.93]    [Pg.200]    [Pg.218]    [Pg.261]    [Pg.214]    [Pg.214]    [Pg.218]   
See also in sourсe #XX -- [ Pg.224 ]




SEARCH



Alkyl halides bases used

Alkyl halides elimination with bases

Alkyl halides using bulky base

Base-Promoted Elimination of an Alkyl Halide

Diastereoselective Alkylation of Glycine Schiff Base with Optically Enriched Alkyl Halides

Halides, alkyl, base induced

Halides, alkyl, base induced alkenes

Halides, alkyl, base induced bases

Halides, alkyl, base induced complexes

Halides, alkyl, base induced elimination

Halides, alkyl, base induced reactions

Halides, alkyl, base induced reagents

Halides, alkyl, base induced salts

Methods based upon alkyl halides

© 2024 chempedia.info