Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Initiation reaction, mechanism

Thus, the value analysis enables to structure chemically the prognosis. As a result new experiments can be planned that are described by constructing the kinetic models, to provide a more reliable prediction of the behavior of an inhibited reaction. For example, it can be recommended to study the reactions imder the conditions of lower initiation rates so that the pro-oxidant role of the inhibitor is unsuppressed. Or, alternatively, to plan experiments with the additions of hydrogen peroxide, hydroperoxide, quinolide peroxides that would reveal a wider set of steps in the base mechanism required to perform an adequate prognosis. However, as it follows from the results obtained at 120 and the reliable kinetic information about the initial reaction mechanism, the analysis of the inhibited reaction is evidently valid also for 60 °Cand37°C. [Pg.168]

The studies of the initiating reaction mechanism and of the dependence of nitrogen oxides reactivity on specific interactions with functional groups of macromolecules are of particular importance. For an understanding of the reaction mechanism, the detection of primary radical species of substrate molecules is of special interest. The results of the latest investigations relating to this problem are considered in this monograph. [Pg.2]

Monomers, Catalysts (Initiators), Reaction Mechanism, and Monomer Reactivity 398... [Pg.397]

Vibrational motion is thus an important primary step in a general reaction mechanism and detailed investigation of this motion is of utmost relevance for our understanding of the dynamics of chemical reactions. In classical mechanics, vibrational motion is described by the time evolution and l t) of general internal position and momentum coordinates. These time dependent fiinctions are solutions of the classical equations of motion, e.g. Newton s equations for given initial conditions and I Iq) = Pq. [Pg.1056]

The reaction mechanisms of plasma polymerization processes are not understood in detail. Poll et al [34] (figure C2.13.6) proposed a possible generic reaction sequence. Plasma-initiated polymerization can lead to the polymerization of a suitable monomer directly at the surface. The reaction is probably triggered by collisions of energetic ions or electrons, energetic photons or interactions of metastables or free radicals produced in the plasma with the surface. Activation processes in the plasma and the film fonnation at the surface may also result in the fonnation of non-reactive products. [Pg.2807]

The mechanism of the formation of these three compounds is based on the initial reaction between ethanol and a strong acid such as sulphuric acid, which involves protonation of the ethanolic oxygen to form the ion (1). [Pg.77]

The reaction of perfluoroalkyl iodides with alkenes affords the perfluoro-alkylated alkyl iodides 931. Q.a-Difluoro-functionalized phosphonates are prepared by the addition of the iododifluoromethylphosphonate (932) at room temperature[778], A one-electron transfer-initiated radical mechanism has been proposed for the addition reaction. Addition to alkynes affords 1-perfluoro-alkyl-2-iodoalkenes (933)[779-781]. The fluorine-containing oxirane 934 is obtained by the reaction of allyl aicohol[782]. Under a CO atmosphere, the carbocarbonylation of the alkenol 935 and the alkynol 937 takes place with perfluoroalkyl iodides to give the fluorine-containing lactones 936 and 938[783]. [Pg.264]

Methoxythiazoles are converted to the corresponding N-methyl-A-4-thiazoline-2-ones by heating with excess methyl iodide (29, 243). The reaction mechanism can be considered initially as the formation of a... [Pg.409]

Studies of the reaction mechanism of the catalytic oxidation suggest that a tit-hydroxyethylene—palladium 7t-complex is formed initially, followed by an intramolecular exchange of hydrogen and palladium to give a i yW-hydtoxyethylpalladium species that leads to acetaldehyde and metallic palladium (88-90). [Pg.51]

The reaction mechanisms by which the VOCs are oxidized are analogous to, but much more complex than, the CH oxidation mechanism. The fastest reacting species are the natural VOCs emitted from vegetation. However, natural VOCs also react rapidly with O, and whether they are a net source or sink is determined by the natural VOC to NO ratio and the sunlight intensity. At high VOC/NO ratios, there is insufficient NO2 formed to offset the O loss. However, when O reacts with the internally bonded olefinic compounds, carbonyls are formed and, the greater the sunshine, the better the chance the carbonyls will photolyze and produce OH which initiates the O.-forming chain reactions. [Pg.370]

However, reaction 7 suffers other shortcomings, eg, entropy problems. Other proposals range from trace peroxidic contaminants to ionic mechanisms for generating peroxides (1) to cosmic rays (17). In any event, the initiating reactions are significant only during the induction period (18). [Pg.334]

Direct oxidation yields biacetyl (2,3-butanedione), a flavorant, or methyl ethyl ketone peroxide, an initiator used in polyester production. Ma.nufa.cture. MEK is predominandy produced by the dehydrogenation of 2-butanol. The reaction mechanism (11—13) and reaction equihbtium (14) have been reported, and the process is in many ways analogous to the production of acetone (qv) from isopropyl alcohol. [Pg.489]

Materials and Reactions. Candle systems vary in mechanical design and shape but contain the same genetic components (Fig. 1). The candle mass contains a cone of material high in iron which initiates reaction of the soHd chlorate composite. Reaction of the cone material is started by a flash powder train fired by a spring-actuated hammer against a primer. An electrically heated wire has also been used. The candle is wrapped in insulation and held in an outer housing that is equipped with a gas exit port and rehef valve. Other elements of the assembly include gas-conditioning filters and chemicals and supports for vibration and shock resistance (4). [Pg.484]

Lactams can also be polymerized under anhydrous conditions by a cationic mechanism initiated by strong protic acids, their salts, and Lewis acids, as weU as amines and ammonia (51—53). The complete reaction mechanism is complex and this approach has not as yet been used successfully in a commercial process. [Pg.224]

Mechanism of the initial reaction, known as alkaline peeling, is shown in equation 4. EnoHzations and tautomerizations take place easily because of the contiguous hydroxyl groups. The hydroxyl or substituted hydroxyl on the second, ie, P-carbon, from a carbonyl group is released from the molecule by P-elimination. [Pg.261]

Delignification Chemistty. The chemical mechanism of sulfite delignification is not fully understood. However, the chemistry of model compounds has been studied extensively, and attempts have been made to correlate the results with observations on the rates and conditions of delignification (61). The initial reaction is sulfonation of the aUphatic side chain, which occurs almost exclusively at the a-carbon by a nucleophilic substitution. The substitution displaces either a hydroxy or alkoxy group ... [Pg.272]

Polymerization Reactions. The polymerization of butadiene with itself and with other monomers represents its largest commercial use. The commercially most important polymers are styrene—butadiene mbber (SBR), polybutadiene (BR), styrene—butadiene latex (SBL), acrylonittile—butadiene—styrene polymer (ABS), and nittile mbber (NR). The reaction mechanisms are free-radical, anionic, cationic, or coordinate, depending on the nature of the initiators or catalysts (194—196). [Pg.345]

This is an exothermic reaction, and both homogeneous (radical or cationic) and heterogeneous (soHd catalyst) initiators are used. The products range in molecular weight from below 1000 to a few million (see Olefin polymers). Reaction mechanisms and reactor designs have been extensively discussed (10-12). [Pg.432]

By changing Ser 221 in subtilisin to Ala the reaction rate (both kcat and kcat/Km) is reduced by a factor of about 10 compared with the wild-type enzyme. The Km value and, by inference, the initial binding of substrate are essentially unchanged. This mutation prevents formation of the covalent bond with the substrate and therefore abolishes the reaction mechanism outlined in Figure 11.5. When the Ser 221 to Ala mutant is further mutated by changes of His 64 to Ala or Asp 32 to Ala or both, as expected there is no effect on the catalytic reaction rate, since the reaction mechanism that involves the catalytic triad is no longer in operation. However, the enzyme still has an appreciable catalytic effect peptide hydrolysis is still about 10 -10 times the nonenzymatic rate. Whatever the reaction mechanism... [Pg.217]

A special type of substituent effect which has proved veiy valuable in the study of reaction mechanisms is the replacement of an atom by one of its isotopes. Isotopic substitution most often involves replacing protium by deuterium (or tritium) but is applicable to nuclei other than hydrogen. The quantitative differences are largest, however, for hydrogen, because its isotopes have the largest relative mass differences. Isotopic substitution usually has no effect on the qualitative chemical reactivity of the substrate, but often has an easily measured effect on the rate at which reaction occurs. Let us consider how this modification of the rate arises. Initially, the discussion will concern primary kinetic isotope effects, those in which a bond to the isotopically substituted atom is broken in the rate-determining step. We will use C—H bonds as the specific topic of discussion, but the same concepts apply for other elements. [Pg.222]

Certain kinetic aspects of free-radical reactions are unique in comparison with the kinetic characteristics of other reaction types that have been considered to this point. The underlying difference is that many free-radical reactions are chain reactions that is, the reaction mechanism consists of a cycle of repetitive steps which form many product molecules for each initiation event. The hypothetical mechanism below illustrates a chain reaction. [Pg.683]

The result of the steady-state condition is that the overall rate of initiation must equal the total rate of termination. The application of the steady-state approximation and the resulting equality of the initiation and termination rates permits formulation of a rate law for the reaction mechanism above. The overall stoichiometry of a free-radical chain reaction is independent of the initiating and termination steps because the reactants are consumed and products formed almost entirely in the propagation steps. [Pg.683]

What happens in a chemical reaction during the period between the initial (reactant) state and the final (product) state An answer to this question constitutes a description of the mechanism of the reaction. The study of reaction mechanisms is a major application of chemical kinetics, and most of this book is devoted to this application an introduction is given in Section 1.2. [Pg.2]


See other pages where Initiation reaction, mechanism is mentioned: [Pg.346]    [Pg.363]    [Pg.294]    [Pg.294]    [Pg.144]    [Pg.147]    [Pg.346]    [Pg.363]    [Pg.294]    [Pg.294]    [Pg.144]    [Pg.147]    [Pg.791]    [Pg.2145]    [Pg.350]    [Pg.167]    [Pg.6]    [Pg.513]    [Pg.14]    [Pg.513]    [Pg.480]    [Pg.160]    [Pg.641]    [Pg.465]    [Pg.605]    [Pg.181]    [Pg.510]    [Pg.191]    [Pg.145]    [Pg.972]    [Pg.370]    [Pg.22]   


SEARCH



Initiation mechanism

Initiation mechanisms, radical reactions

Initiation mechanisms, radical reactions electron transfer

Initiation mechanisms, radical reactions photolysis

Initiation mechanisms, radical reactions thermolysis

Initiation reaction

Initiation reaction, mechanism thermal

Ordered mechanism three-substrate reactions, initial rate

Reaction initiated

Reaction mechanisms initiation steps

Reaction mechanisms with fast initial step

Reaction mechanisms with slow initial step

Reaction, Chain Mechanisms initiation

© 2024 chempedia.info