Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inhibition of the Maillard Reaction

At present, antioxidants are extensively studied as supplements for the treatment diabetic patients. Several clinical trials have been carried out with vitamin E. In 1991, Ceriello et al. [136] showed that supplementation of vitamin E to insulin-requiring diabetic patients reduced protein glycosylation without changing plasma glucose, probably due to the inhibition of the Maillard reaction. Then, Paolisso et al. [137] found that vitamin E decreased glucose level and improved insulin action in noninsulin-dependent diabetic patients. Recently, Jain et al. [138] showed that vitamin E supplementation increased glutathione level and diminished lipid peroxidation and HbAi level in erythrocytes of type 1 diabetic children. Similarly, Skyrme-Jones et al. [139] demonstrated that vitamin E supplementation improved endothelial vasodilator function in type 1 diabetic children supposedly due to the suppression of LDL oxidation. Devaraj et al. [140] used the urinary F2-isoprostane test for the estimate of LDL oxidation in type 2 diabetics. They also found that LDL oxidation decreased after vitamin E supplementation to patients. [Pg.925]

HPs are effective for the extraction of metabolites that function as pigments or flavorings permit the selective proteolysis of proteins that is important for the elaboration of modified milk for babies and allow the inhibition of the Maillard reaction among others (Barbosa-Canovas et al., 1998). However, it has been observed that the color of food can be affected by pressure. Within the more resistant pigments are the carotenoids, chlorophyll and anthocyanines, while myoglobin is more sensible (Cheftel, 1992). [Pg.226]

Fu MX, Wells-Knecht KJ, Blackledge JA, Lyons TJ, Thorpe SR and Baynes JW (1994) Kinetics, mechanisms, and inhibition of late stages of the Maillard reaction. Diabetes 43, 676-683. [Pg.54]

In conclusion, evidence has been gathered for a role of the Maillard reaction in caries. This reaction can cause inhibition of matrix degradation, which in turn inhibits lesion demineralization. Further research is needed to elucidate the pathways and the importance of this reaction in in vivo caries pathology. [Pg.98]

The studies reviewed demonstrate that browning products produced on retorting of meat inhibit development of WOF, so that canned meat products are not subject to this flavor defect. The flavor of canned meat is less desirable, however, than that of freshly cooked meat. Nevertheless, the strong inhibitory action of the Maillard reaction products against WOF suggests that they could be useful in preventing development of WOF, so further research in this area could be fruitful. [Pg.298]

The major intermediate of the Maillard reaction 38, having an ally lie system, seems to furnish a cytotoxic ester on metabolic sulfonation [298]. In contrast to the above findings, some Amadori products, such as pyrazines have antimutagenicity [299,300,301]. Enkastines, the Amadori products of 33 and dipeptides, beneficially prolong the action of enkephaline by inhibiting enkephalinase [302]. [Pg.417]

In our investigation on the effect of Maillard reaction products on the absorption of tryptophan (36), the kinetics of the absorption of tryptophan in the presence of Maillard reaction products formed in the glucose-tryptophan system was studied by bott vitro everted gut sac method and vivo catherization of the portal vein. Fructose-L-tryptophan (Amadori compound) appeared to be the major fraction of the reaction products when fractionated using a cellulose column eluted by water-saturated n-butanol. The absorption of L-tryptophan was partially inhibited vitro and vivo by fructose-L-tryptophan in a competitive manner with an inhibitor constant (Ki) of l.lmM. The relative absorption rate of L-tryptophan was significantly lower in the presence of the Maillard reaction products than in the presence of fructose-L-tryptophan indicating the presence of other inhibitory factors in the reaction products. The in vivo absorption of fructose-L-tryptophan was almost negligible compared to that of tryptophan. The inhibited absorption by Maillard reaction products, may have contributed in part to an incomplete recovery in the growth of the rats when fed a supplemented browned synthetic amino acid diet. [Pg.387]

It has also been found that aminoguanidine could inhibit the Maillard reaction both in vitro and in vivo. The action of aminoguanidine is probably due to the trapping of intermediates of the advanced Maillard reaction, such as 3-DG, leading to the inhibition of further progress of the Maillard reaction [217]. [Pg.369]

The health impairing and toxic elfects of oxidation of lipids are due to loss of vitamins, polyenoic fatty acids, and other nutritionally essential components formation of radicals, hydroperoxides, aldehydes, epoxides, dimers, and polymers and participation of the secondary products in initiation of oxidation of proteins and in the Maillard reaction. Dilferent oxysterols have been shown in vitro and in vivo to have atherogenic, mutagenic, carcinogenic, angiotoxic, and cytotoxic properties, as well as the ability to inhibit cholesterol synthesis (Tai et ah, 1999 Wpsowicz, 2002). [Pg.298]

Armstrong attributed the increased resistance of dentin matrix to proteolysis to the blockage of susceptible sites by covalently bound carbohydrate. Later it became clear that the Maillard reaction induces the formation of covalent bonds (cross-links) between protein molecules, accounting for such resistance as well. The presence of non-degradable matrix proteins inhibits mineral dissolution (Chapter 2). In addition, both brown pigments and cross-linked proteins inhibit the production of extracellular polysaccharides by cariogenic streptococci (Kobayashi et al., 1990). [Pg.34]

Humic substances. Analogous to the reactions described above, humic substances (the polymeric pigments from soil (humus) and marine sediments) can be formed by both enzymatic and non-enzymatic browning. High concentrations of free calcium and phosphate ions and supersaturation with respect to hydroxyapatite can sustain in soil, because adsorption of humic acids to mineral surfaces inhibits crystal growth (Inskeep and Silvertooth, 1988). A similar adsorption to tooth mineral in a caries lesion can be anticipated for polycarboxylic polymers from either the Maillard reaction or enzymatic browning. [Pg.36]

In summary, there are at least four ways in which residual moisture in the amorphous state can impact on chemical reactivity. First, as a direct interaction with the drug, for example, in various hydrolytic reactions. Second, water can influence reactivity as a by-product of the reaction, by inhibiting the rate of the forward reaction, for example, in various condensation reactions, such as the Maillard reaction. Third, water acting locally as a solvent or medium facilitating a reaction, without direct participation. Finally, by virtue of its high free volume and low Tg, water can act as a plasticiser, reducing viscosity and enhancing diffusivity [28]. [Pg.26]

Sato et a2- (34) demonstrated that a variety of common meat additives, inclucnrTg cottonseed flour, nonfat dry milk, spray-dried whey, wheat germ, and textured soy flour, inhibited WOF in the meat system. These products may have exerted their inhibitory effect on WOF through the Maillard reaction, since most of them contain some reducing sugars. Pratt (40) reported soybeans and soy protein concentrate had an inhibitory effect upon development of WOF and was able to demonstrate that the active components are water soluble. Fractionation and analysis of the water-soluble fraction showed the antioxidant activity was due to the presence of isoflavones and hydroxylated cinnamic acids (40). This confirms earlier work showing that the flavonoTcis present in plant extracts inhibit oxidation in sliced roast beef (41 ). [Pg.298]

Generalizations regarding the Maillard reaction cannot be made, because of the variation in the behavior of different amino acids77,166 and because of the profound effects of comparatively small changes in experimental conditions. That less than one part per million of metallic iron can have a measurable inhibiting effect shows the high sensitivity of the reaction.167... [Pg.133]

It has been known for many years that Maillard Reaction products can behave as antioxidants in food systems (13,14), and they have been shown to inhibit warmed-over flavor development in cooked meat which is caused by the autoxidation of lipids, especially phospholipids. There has been a significant amount of research examining the Maillard reaction products and intermediates from model systems which may have antioxidative properties. [Pg.444]

Of the different types of lipids in foods, the phospholipids, being more unsaturated, are particularly important in relation to aroma formation in meat.151 The aroma of cooked meat was not affected by the prior extraction of triglycerides with hexane, but the use of a more polar solvent (chloroform-methanol), which extracts all lipids, including phospholipids, resulted, after cooking, in the replacement of the meaty aroma by a roast or biscuit-like one. This was reflected in the volatiles, the dominant aliphatic aldehydes and alcohols being replaced by alkylpyrazines. This implies that the participation of the lipids in the Maillard reactions inhibited the formation of heterocyclic compounds. [Pg.47]


See other pages where Inhibition of the Maillard Reaction is mentioned: [Pg.926]    [Pg.122]    [Pg.161]    [Pg.163]    [Pg.165]    [Pg.167]    [Pg.169]    [Pg.171]    [Pg.203]    [Pg.289]    [Pg.27]    [Pg.146]    [Pg.926]    [Pg.122]    [Pg.161]    [Pg.163]    [Pg.165]    [Pg.167]    [Pg.169]    [Pg.171]    [Pg.203]    [Pg.289]    [Pg.27]    [Pg.146]    [Pg.58]    [Pg.326]    [Pg.297]    [Pg.451]    [Pg.444]    [Pg.118]    [Pg.268]    [Pg.129]    [Pg.224]    [Pg.172]    [Pg.174]    [Pg.227]    [Pg.229]    [Pg.177]    [Pg.303]    [Pg.35]    [Pg.68]    [Pg.761]    [Pg.485]    [Pg.103]    [Pg.406]   


SEARCH



Inhibition reactions

Maillard

Maillard inhibition

Maillard reactions

© 2024 chempedia.info