Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Infrared transmission spectrometry

The alternative technique to TIRES is transient infrared transmission spectrometry (TIRTS). This technique is analogous to TIRES, but instead of the sample being at ambient temperature and being heated by the gas jet, the sample is above the ambient temperature and is cooled by a narrow jet of cold helium. Were the sample... [Pg.369]

Transmission, Absorption, and Beer s Law. The majority of infrared spectrometry is stiU done by the classic method of transmission spectrometry the intensity of an infrared beam passing completely through a sample is measured. The standard description of how much radiation passes through the sample is that of Beet s law (or the Bouguer-Beer-Lambertlaw) ... [Pg.197]

In emission spectrometry, the sample is the infrared source. Materials emit infrared radiation by virtue of their temperature. KirchhofF s law states that the amounts of infrared radiation emitted and absorbed by a body in thermal equilibrium must be equal at each wavelength. A blackbody, which is a body having infinite absorptivity, must therefore produce a smooth emission spectrum that has the maximum possible emission intensity of any body at the same temperature. The emissivity, 8, of a sample is the ratio of its emission to that of a blackbody at the same temperature. Infrared-opaque bodies have the same emissivity at all wavelengths so they emit smooth, blackbody-like spectra. On the other hand, any sample dilute or thin enough for transmission spectrometry produces a structured emission spectrum that is analogous to its transmission spectrum because the emissivity is proportional to the absorptivity at each wavelength. The emissivity is calculated from the sample emission spectrum, E, by the relation... [Pg.199]

In the author s opinion, the better approach to experimentally study the morphology of the silica surface is with the help of physical adsorption (see Chapter 6). Then, with the obtained, adsorption data, some well-defined parameters can be calculated, such as surface area, pore volume, and pore size distribution. This line of attack (see Chapter 4) should be complemented with a study of the morphology of these materials by scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning probe microscopy (SPM), or atomic force microscopy (AFM), and the characterization of their molecular and supramolecular structure by Fourier transform infrared (FTIR) spectrometry, nuclear magnetic resonance (NMR) spectrometry, thermal methods, and possibly with other methodologies. [Pg.85]

Vibrational microspectrometry will undoubtedly be applied to medical diagnosis in the near future. One particularly important application of microspectrometry is for the characterization of tissue samples. Tissue samples can be mounted on a water-insoluble infrared-transparent window such as ZnSe, but these windows are expensive and not conducive to visual examination (e.g., after staining of the tissue). A convenient alternative to transmission spectrometry is the measurement of the transflectance spectrum (see Section 13.5) of tissue samples mounted on low-emissivity glass slides [4]. These slides are transparent to visible light but highly reflective to mid-infrared radiation. [Pg.311]

Like transmission spectra, DR spectra must be converted to a different form in order to convert R(v) to a parameter that varies linearly with concentration. By analogy to transmission spectrometry, most practitioners of DR near-infrared (NIR) spectrometry convert R(v) to log]o[l/R(v)]. Plots of logio[l/R(v)] versus concentration are not linear over wide concentration ranges but are perfectly adequate for multicomponent quantitative analysis provided a) that the concentration of each analyte does not vary by much more than a factor of 2, and (h) that the absorptiv-ities of the analytical bands are fairly low. These criteria are often obeyed for the determination of the components of commodities by DR near-infrared spectrometry, but are not usually valid for mid-infrared spectra, where absorptivities are one or two orders of magnitude higher than in the near infrared. [Pg.349]

Compounds can be characterized by infrared transmission, reflection, photoacoustic, and emission spectroscopy. Of these techniques, infrared emission spectrometry is by far the least commonly used in most analytical chemistry laboratories. There is a number of reasons for this state of affairs ... [Pg.363]

There are, however, several occasions when transmission, reflection, or photoacoustic spectra of remote samples simply cannot be measured and emission spectroscopy is the only possible way to obtain qualitative or quantitative information. In this chapter a brief outline of the theory and practice of infrared emission spectrometry is given. [Pg.363]

If the reflectance of a sample is low, as it is with gaseous samples, e(v), is approximately equal to 1 — r(. Thus, for any sample for which a transmittance spectrum with discrete absorption bands can be measured, the emittance spectmm should yield equivalent information. As a result, qualitative analysis of the components of hot gases by infrared emission spectroscopy can be as easy as it is by transmission spectrometry. The problem of obtaining quantitative information by infrared emission spectroscopy is more difficult, since not only must the temperature of the sample be known if the radiant power from the blackbody is to be calculated, but the instrument response function must also be taken into account [1]. [Pg.364]

As noted above, it is difficult to account for the effect of temperature gradients across the sample, which makes quantification by infrared emission spectrometry rather inaccurate. A clever way of not merely getting around the problem of temperature gradients but actually benefiting from them has been described in a series of papers by Jones and McClelland [5-10]. The technique developed by these two workers is known as transient infrared spectroscopy (TIRS) and can be subclassified into two techniques, known as transient infrared emission spectroscopy (TIRES) [5,7] and transient infrared transmission spectroscopy (TIRTS) [8]. In both of these two techniques, the deleterious effect of self-absorption is minimized by avoiding the condition of thermal equilibrium that has been assumed for previous sections of this chapter. [Pg.368]

If a material could be made extremely thin, for example, to the level of a single layer of molecules, this thin layer would transmit almost all of the infrared radiation, so that its infrared transmission spectrum could be measured. In fact, it is possible to measure a mid-infrared transmission spectrum from a thin soap film. It is usually practically difficult, however, to maintain such a thin film without it being supported by a substrate. For a thin film supported on a substrate, its infrared spectmm is often obtained by utilizing a reflection geometry. Two reflection methods are available for measuring infrared spectra from substrate-supported thin films, depending on the dielectric properties of the substrates used. External-reflection (ER) spectrometry, which is the subject of this chapter, is a technique for extracting useful information from thin films on dielectric (or nonmetallic) substrates, while reflection-absorption (RA) spectrometry, described in Chapter 10, is effective for thin films on metallic substrates [1]. In addition to these two reflection methods, attenuated total-reflection (ATR) spectrometry, described in Chapter 13 and emission spectroscopy, described in Chapter 15 may also be useful in some specific cases. [Pg.127]

In infrared emission spectrometry, very weak infrared radiation of emission from a sample itself is to be measured. Consequently, infrared emission measurements have requirements considerably different from transmission and reflection measurements. It is not desirable to use a complicated optical apparatus for emission measurements. [Pg.213]

The main techniques employed for the characterization of clusters include UV/vis optical absorption, luminescence, mass spectrometry, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and Fourier transform infrared (FT-IR). Single crystal X-ray diffraction (XRD) has been used to determine the structures of a few clusters [17-19]. [Pg.339]

Table 5.2 Summary of selected analytical methods for molecular environmental geochemistry. AAS Atomic absorption spectroscopy AFM Atomic force microscopy (also known as SFM) CT Computerized tomography EDS Energy dispersive spectrometry. EELS Electron energy loss spectroscopy EM Electron microscopy EPR Electron paramagnetic resonance (also known as ESR) ESR Electron spin resonance (also known as EPR) EXAFS Extended X-ray absorption fine structure FUR Fourier transform infrared FIR-TEM Fligh-resolution transmission electron microscopy ICP-AES Inductively-coupled plasma atomic emission spectrometry ICP-MS Inductively-coupled plasma mass spectrometry. Reproduced by permission of American Geophysical Union. O Day PA (1999) Molecular environmental geochemistry. Rev Geophysics 37 249-274. Copyright 1999 American Geophysical Union... Table 5.2 Summary of selected analytical methods for molecular environmental geochemistry. AAS Atomic absorption spectroscopy AFM Atomic force microscopy (also known as SFM) CT Computerized tomography EDS Energy dispersive spectrometry. EELS Electron energy loss spectroscopy EM Electron microscopy EPR Electron paramagnetic resonance (also known as ESR) ESR Electron spin resonance (also known as EPR) EXAFS Extended X-ray absorption fine structure FUR Fourier transform infrared FIR-TEM Fligh-resolution transmission electron microscopy ICP-AES Inductively-coupled plasma atomic emission spectrometry ICP-MS Inductively-coupled plasma mass spectrometry. Reproduced by permission of American Geophysical Union. O Day PA (1999) Molecular environmental geochemistry. Rev Geophysics 37 249-274. Copyright 1999 American Geophysical Union...

See other pages where Infrared transmission spectrometry is mentioned: [Pg.200]    [Pg.155]    [Pg.200]    [Pg.155]    [Pg.254]    [Pg.215]    [Pg.200]    [Pg.155]    [Pg.200]    [Pg.155]    [Pg.254]    [Pg.215]    [Pg.199]    [Pg.201]    [Pg.198]    [Pg.199]    [Pg.201]    [Pg.22]    [Pg.186]    [Pg.34]    [Pg.253]    [Pg.366]    [Pg.555]    [Pg.114]    [Pg.208]    [Pg.199]    [Pg.200]    [Pg.1006]    [Pg.231]    [Pg.269]    [Pg.87]    [Pg.208]    [Pg.198]    [Pg.199]    [Pg.200]    [Pg.145]    [Pg.231]    [Pg.252]   
See also in sourсe #XX -- [ Pg.254 ]




SEARCH



Infrared spectrometry

Infrared transmission

Transmission spectrometry

© 2024 chempedia.info