Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Linearity with concentration

The thickness of the equivalent layer of pure water t on the surface of a 3Af sodium chloride solution is about 1 A. Calculate the surface tension of this solution assuming that the surface tension of salt solutions varies linearly with concentration. Neglect activity coefficient effects. [Pg.94]

The iimnodified temi absorbance usually means this quantity, though some authors use the Napierian absorbance B = -hiT. The absorbance is so iisefiil because it nomially increases linearly with path length, /, tlirough the sample and with the concentration, c, of the absorbing species within the sample. The relationship is usually called Beer s law ... [Pg.1121]

The scan rate, u = EIAt, plays a very important role in sweep voltannnetry as it defines the time scale of the experiment and is typically in the range 5 mV s to 100 V s for nonnal macroelectrodes, although sweep rates of 10 V s are possible with microelectrodes (see later). The short time scales in which the experiments are carried out are the cause for the prevalence of non-steady-state diflfiision and the peak-shaped response. Wlien the scan rate is slow enough to maintain steady-state diflfiision, the concentration profiles with time are linear within the Nemst diflfiision layer which is fixed by natural convection, and the current-potential response reaches a plateau steady-state current. On reducing the time scale, the diflfiision layer caimot relax to its equilibrium state, the diffusion layer is thiimer and hence the currents in the non-steady-state will be higher. [Pg.1927]

Cryoscopic investigations suggest that in sulpholan nitronium tetrafluoroborate exists predominantly as ion pairs. - The specific conductivity of these solutions increases linearly with the concentration of the salt (up to 0-4 mol 1 ), and is attributed to the existence of ion-triplets rather than free ions. ... [Pg.61]

A single-point internal standardization has the same limitations as a singlepoint normal calibration. To construct an internal standard calibration curve, it is necessary to prepare several standards containing different concentrations of analyte. These standards are usually prepared such that the internal standard s concentration is constant. Under these conditions a calibration curve of (SA/Sis)stand versus Ca is linear with a slope of K/Cis-... [Pg.117]

Spectroscopic measurements may also involve the scattering of light by a particulate form of the analyte, fn turbidimetry, the decrease in the radiation s transmittance through the sample is measured and related to the analyte s concentration through Beer s law. fn nephelometry we measure the intensity of scattered radiation, which varies linearly with the analyte s concentration. [Pg.446]

Thus, for a second-order reaction, a plot of [A] versus f is linear, with a slope of k and an intercept of [A]o h Alternatively, a reaction can be shown to be second-order in A by observing the effect on the rate of changing the concentration of A. In this case, doubling the concentration of A produces a fourfold increase in the reaction s rate. [Pg.753]

These last expressions provide two very useful views of the progress of a condensation polymerization reaction with time. Equation (5.14) describes how the concentration of A groups asymptotically approaches zero at long times Eq. (5.17) describes how the degree of polymerization increases linearly with time. [Pg.285]

Divalent copper, cobalt, nickel, and vanadyl ions promote chemiluminescence from the luminol—hydrogen peroxide reaction, which can be used to determine these metals to concentrations of 1—10 ppb (272,273). The light intensity is generally linear with metal concentration of 10 to 10 M range (272). Manganese(II) can also be determined when an amine is added to increase its reduction potential by stabili2ing Mn (ITT) (272). Since all of these ions are active, ion exchange must be used for deterrnination of a particular metal in mixtures (274). [Pg.274]

Hydrogen Peroxide Analysis. Luminol has been used for hydrogen peroxide analysis at concentrations as low as 10 M using the cobalt(III) triethanolamine complex (280) or ferricyanide (281) as promoter. With the latter, chemiluminescence is linear with peroxide concentration from... [Pg.275]

Films from prepolymer solutions can be cured by heating at 150°C. Heating the prepolymer in molds gives clear, insoluble moldings (38). The bulk polymerisation of DAP at 80°C has been studied (35). In conversions to ca 25% soluble prepolymer, rates were nearly linear with time and concentrations of bensoyl peroxide. A higher initiator concentration is required than in typical vinyl-type polymerisations. [Pg.84]

The intensity of "umami" increases linearly with a logarithmic increase in the concentration of MSG. The synergistic effect of MSG with 5 -ribonucleotides is expressed by the following relation... [Pg.305]

The thiophthalimide (CTP) and sulfenamide classes of retarders differ from the organic acid types by thek abiUty to retard scorch (onset of vulcanization) without significantly affecting cure rate or performance properties. Much has been pubUshed on the mechanism of CTP retardation. It functions particularly well with sulfenamide-accelerated diene polymers, typically those used in the the industry. During the initial stages of vulcanization, sulfenamides decompose to form mercaptobenzothiazole (MBT) and an amine. The MBT formed reacts with additional sulfenamide to complete the vulcanization process. If the MBT initially formed is removed as soon as it forms, vulcanization does not occur. It is the role of CTP to remove MBT as it forms. The retardation effect is linear with CTP concentration and allows for excellent control of scorch behavior. [Pg.238]

Based on the above equilibria, the concentration of HOCl in the normal pH range varies inversely with the total concentration of cyanurate. Increased concentration of cyanuric acid, therefore, should decrease the biocidal effectiveness of FAC. This has been confirmed by laboratory studies in buffered distilled water which showed 99% kill times of S.faecalis at 20°C increasing linearly with increasing cyanuric acid concentration at constant av. Cl at pH 7 and 9 (45). Other studies in distilled water have found a similar effect of cyanuric acid on kill times of bacteria (46—48). Calculations based on the data from Ref. 45 show that the kill times are highly correlated to the HOCl concentration and poorly to the concentration of the various chloroisocyanurates, indicating that HOCl is the active bactericide in stabilized pools (49). [Pg.301]

Trace elements added to copper exert a significant influence on electrical conductivity. Effects on conductivity vary because of inherent differences ia effective atomic size and valency. The decrease ia conductivity produced by those elements appearing commonly ia copper, at a fixed atomic concentration, rank as follows Zn (least detrimental), Ag, Mg, Al, Ni, Si, Sn, P, Fe (most). Table 12 summarizes these effects. In the absence of chemical or physical interactions, the increase in electrical resistivity is linear with amounts of each element, and the effect of multiatom additions is additive. [Pg.229]

Furthermore, in a series of polyoxyethylene nonylphenol nonionic surfactants, the value of varied linearly with the HLB number of the surfactant. The value of K2 varied linearly with the log of the interfacial tension measured at the surfactant concentration that gives 90% soil removal. Carrying the correlations still further, it was found that from the detergency equation of a single surfactant with three different polar sods, was a function of the sod s dipole moment and a function of the sod s surface tension (81). [Pg.535]

In the other common paradigm, desorption from a system or a material is studied. At t = 0, the system is loaded with a known concentration or activity of dmg and is immersed in an infinite, weU-stirred receiver solution maintained at concentration C = 0. The amount released per unit area is then measured over time. For a uniform slab of thickness / where the release of dmg is from both sides, the fraction released / Q is linear with the square root of time and is given by ... [Pg.225]

Other Effects Stream concentration can have important effects on corrosion rates. Unfortunately, corrosion rates are seldom linear with concentration over wide ranges. In equipment such as distillation columns, reactors, and evaporators, concentration can change continuously, makiug prediction of corrosion rates rather difficult. Concentration is important during plant shutdown presence of moisture that collects during cooling can turn innocuous chemicals into dangerous corrosives. [Pg.2422]

Figure 11.7 shows how the mechanical properties of normalised carbon steels change with carbon content. Both the yield strength and tensile strength increase linearly with carbon content. This is what we would expect the FejC acts as a strengthening phase, and the proportion of FojC in the steel is linear in carbon concentration (Fig. 11.6a). The ductility, on the other hand, falls rapidly as the carbon content goes up (Fig. 11.7) because the a-FejC interfaces in pearlite are good at nucleating cracks. Figure 11.7 shows how the mechanical properties of normalised carbon steels change with carbon content. Both the yield strength and tensile strength increase linearly with carbon content. This is what we would expect the FejC acts as a strengthening phase, and the proportion of FojC in the steel is linear in carbon concentration (Fig. 11.6a). The ductility, on the other hand, falls rapidly as the carbon content goes up (Fig. 11.7) because the a-FejC interfaces in pearlite are good at nucleating cracks.
It is reasonable to assume that the glass transition temperature Tg drops linearly with increase in chain-end concentration, that is with an increase in the reciprocal of the molecular weight. This will give an equation of the form... [Pg.63]

In addition, the concentration of solute in both phases increased almost linearly with the amount of solute added. This would indicate that the system was operating over that part of the adsorption isotherm that was linear. Thus, the solute was interacting... [Pg.103]

Katz et al. also plotted the distribution coefficient of n-pentanol, benzonitrile and vinyl acetate against the concentration of unassociated methanol in the solvent mixture and the results are shown in Figure 32. It is seen that the distribution coefficient of all three solutes is predominantly controlled by the amount of unassociated methanol in the aqueous solvent mixture. In addition, the distribution coefficient increases linearly with the concentration of unassociated methanol for all three solutes over the entire concentration range. The same type of curves for anisole and benzene, shown in Figure 33, however, differ considerably. Although the relationship between distribution coefficient and unassociated methanol concentration is approximately linear up to about 50%v/v of unassociated methanol, over the entire range the... [Pg.138]


See other pages where Linearity with concentration is mentioned: [Pg.267]    [Pg.267]    [Pg.83]    [Pg.415]    [Pg.147]    [Pg.592]    [Pg.640]    [Pg.140]    [Pg.194]    [Pg.516]    [Pg.276]    [Pg.276]    [Pg.403]    [Pg.498]    [Pg.471]    [Pg.237]    [Pg.246]    [Pg.342]    [Pg.227]    [Pg.287]    [Pg.1729]    [Pg.1855]    [Pg.598]    [Pg.828]    [Pg.399]    [Pg.581]    [Pg.156]    [Pg.116]    [Pg.117]    [Pg.124]   
See also in sourсe #XX -- [ Pg.91 ]




SEARCH



A non-linear biochemical reaction system with concentration fluctuations

© 2024 chempedia.info