Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Infrared spectroscopy composites

Infrared spectra of fats and oils are similar regardless of their composition. The principal absorption seen is the carbonyl stretching peak which is virtually identical for all triglyceride oils. The most common appHcation of infrared spectroscopy is the determination of trans fatty acids occurring in a partially hydrogenated fat (58,59). Absorption at 965 - 975 cm is unique to the trans functionaHty. Near infrared spectroscopy has been utilized for simultaneous quantitation of fat, protein, and moisture in grain samples (60). The technique has also been reported to be useful for instmmental determination of iodine value (61). [Pg.132]

Polyester composition can be determined by hydrolytic depolymerization followed by gas chromatography (28) to analyze for monomers, comonomers, oligomers, and other components including side-reaction products (ie, DEG, vinyl groups, aldehydes), plasticizers, and finishes. Mass spectroscopy and infrared spectroscopy can provide valuable composition information, including end group analysis (47,101,102). X-ray fluorescence is commonly used to determine metals content of polymers, from sources including catalysts, delusterants, or tracer materials added for fiber identification purposes (28,102,103). [Pg.332]

Poly(vinyl acetate). The dielectric and mechanical spectra of hybrids produced by mixing a poly(vinyl acetate)—THE solution with TEOS, followed by the addition of HCl have been investigated (45). Mixtures were made which were beheved to be 0, 5, 10, 15, and 20 wt % Si02, respectively. These composites were transparent and Eourier transform infrared spectroscopy (ftir) revealed hydrogen bonding between the siUcate network and carbonyl units of the poly(vinyl acetate) (PVAc). No shift in the T of the composites from that of the pure PVAc was observed. Similarly, the activation... [Pg.329]

The formation of such materials may be monitored by several techniques. One of the most useful methods is and C-nmr spectroscopy where stable complexes in solution may give rise to characteristic shifts of signals relative to the uncomplexed species (43). Solution nmr spectroscopy has also been used to detect the presence of soHd inclusion compound (after dissolution) and to determine composition (host guest ratio) of the material. Infrared spectroscopy (126) and combustion analysis are further methods to study inclusion formation. For general screening purposes of soHd inclusion stmctures, the x-ray powder diffraction method is suitable (123). However, if detailed stmctures are requited, the single crystal x-ray diffraction method (127) has to be used. [Pg.74]

Surface analysis has made enormous contributions to the field of adhesion science. It enabled investigators to probe fundamental aspects of adhesion such as the composition of anodic oxides on metals, the surface composition of polymers that have been pretreated by etching, the nature of reactions occurring at the interface between a primer and a substrate or between a primer and an adhesive, and the orientation of molecules adsorbed onto substrates. Surface analysis has also enabled adhesion scientists to determine the mechanisms responsible for failure of adhesive bonds, especially after exposure to aggressive environments. The objective of this chapter is to review the principals of surface analysis techniques including attenuated total reflection (ATR) and reflection-absorption (RAIR) infrared spectroscopy. X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and secondary ion mass spectrometry (SIMS) and to present examples of the application of each technique to important problems in adhesion science. [Pg.243]

Infrared spectroscopy, including Fourier-transform infrared (FTIR) spectroscopy, is one of the oldest techniques used for surface analysis. ATR has been used for many years to probe the surface composition of polymers that have been surface-modified by an etching process or by deposition of a film. RAIR has been widely used to characterize thin films on the surfaces of specular reflecting substrates. FTIR has numerous characteristics that make it an appropriate technique for... [Pg.243]

ATR infrared spectroscopy can be used to construct a depth profile showing the way in which the surface composition of a polymer changes as a function of distance away from the surface and into the polymer [3], As long as the polymer is not a very strong absorber, the absorbance of an infrared band in ATR is ... [Pg.246]

The most widely used techniques for surface analysis are Auger electron spectroscopy (AES), x-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS), Raman and infrared spectroscopy, and contact angle measurement. Some of these techniques have the ability to determine the composition of the outermost atomic layers, although each technique possesses its own special advantages and disadvantages. [Pg.517]

Igniters, Incendiaries, Boosters, and Delay Compositions on a Micro Scale by Use of Infrared Spectroscopy , FrankfordArs Rept T-71-6-1 (1971) 8) G.A. St John M. [Pg.141]

This is a nonpolar rubber with very little unsamration. Nanoclays as well as nanotubes have been used to prepare nanocomposites of ethylene-propylene-diene monomer (EPDM) rubber. The work mostly covers the preparation and characterization of these nanocomposites. Different processing conditions, morphology, and mechanical properties have been smdied [61-64]. Acharya et al. [61] have prepared and characterized the EPDM-based organo-nanoclay composites by X-ray diffracto-gram (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy... [Pg.35]

Mori, S., Determination of the composition and molecular-weight distribution of a poly(vinyl chloride-vinyl acetate) co-polymer by gel permeation chromatography and infrared spectroscopy, ]. Chromatogr., 157, 75, 1978. [Pg.370]

Standardisation of EPDM characterisation tests (molecular composition, stabiliser and oil content) for QC and specification purposes was reported [64,65]. Infrared spectroscopy (rather than HPLC or photometry) is recommended for the determination of the stabiliser content (hindered phenol type) of EP(D)M [65]. Determination of the oil content of oil-extended EPDM is best carried out by Soxhlet extraction using MEK as a solvent [66], A round robin test was reported that evaluated the various techniques currently used in the investigation of unknown rubber compounds (passenger tyre tread stock formulations) [67]. [Pg.35]

Composition and structure of newly developed additives are commonly examined by IR, NMR, MS and elemental analysis, e.g. recently developed higher MW antioxidants [115]. Infrared spectroscopy is also well suited to the direct verification of compound composition and quantitative determination of additives in polymers. Gray and Neri [116] have used Soxhlet... [Pg.316]

The material balance is consistent with the results obtained by OSA (S2+S4 in g/100 g). For oil A, the coke zone is very narrow and the coke content is very low (Table III). On the contrary, for all the other oils, the coke content reaches higher values such as 4.3 g/ 100 g (oil B), 2.3 g/ioo g (oil C), 2.5 g/ioo g (oil D), 2.4/100 g (oil E). These organic residues have been studied by infrared spectroscopy and elemental analysis to compare their compositions. The areas of the bands characteristic of C-H bands (3000-2720 cm-1), C=C bands (1820-1500 cm j have been measured. Examples of results are given in Fig. 4 and 5 for oils A and B. An increase of the temperature in the porous medium induces a decrease in the atomic H/C ratio, which is always lower than 1.1, whatever the oil (Table III). Similar values have been obtained in pyrolysis studies (4) Simultaneously to the H/C ratio decrease, the bands characteristics of CH and CH- groups progressively disappear. The absorbance of the aromatic C-n bands also decreases. This reflects the transformation by pyrolysis of the heavy residue into an aromatic product which becomes more and more condensed. Depending on the oxygen consumption at the combustion front, the atomic 0/C ratio may be comprised between 0.1 and 0.3 ... [Pg.415]

A comprehensive review of compositional and failure analysis of polymers, which includes many further examples of analysis of contaminants, inclusions, chemical attack, degradation, etc., was published in 2000 [2], It includes details on methodologies, sampling, and sample preparation, and microscopy, infrared spectroscopy, and thermal analysis techniques. [Pg.608]

As already indicated above, what one may consider a surface depends on the property under consideration. Adhesion is very much an outer atomic layer issue, unless one is dealing with materials like fibreboard in which the polymer resin may also be involved in mechanical anchoring onto the wood particles. Gloss and other optical properties are related to the penetration depth of optical radiation. The latter depends on the optical properties of the material, but in general involves more than a few micrometer thickness and therewith much more than the outer atomic layers only. It is thus the penetration depth of the probing technique that needs to be suitably selected with respect to the surface problem under investigation. Examples selected for various depths (< 10 nm, 10 s of nm, 100 nm, micrometer scale) have been presented in Chapter 10 of the book by Garton on Infrared Spectroscopy of Polymer Blends, Composites and Surfaces... [Pg.676]

The phase composition of glycine crystal forms during the drying step of a wet granulation process has been studied, and a model developed for the phase conversion reactions [88], X-ray powder diffraction was used for qualitative analysis, and near-infrared spectroscopy for quantitative analysis. It was shown that when glycine was wet granulated with microcrystalline cellulose, the more rapidly the granulation... [Pg.274]

In this technique, both the amount and composition of the volatile component are measured as a function of temperature. The composition of the evolved gases can be determined using gas chromatography, mass spectrometry, or infrared spectroscopy. [Pg.249]

This process has been studied by infrared spectroscopy by Dwyer (22), using 9% Pt/Si02 and the cell used by Ueno et al. (19). The bands arising from gaseous CO2 and surface CO were followed after a switch in the gas phase composition from 3kPa O2 in helium, to pure helium for a few seconds and then to 2kPa CO in helium. [Pg.19]


See other pages where Infrared spectroscopy composites is mentioned: [Pg.2117]    [Pg.272]    [Pg.484]    [Pg.486]    [Pg.317]    [Pg.398]    [Pg.418]    [Pg.259]    [Pg.602]    [Pg.241]    [Pg.296]    [Pg.297]    [Pg.172]    [Pg.126]    [Pg.465]    [Pg.381]    [Pg.350]    [Pg.260]    [Pg.96]    [Pg.207]    [Pg.40]    [Pg.59]    [Pg.387]    [Pg.116]    [Pg.409]    [Pg.240]    [Pg.442]    [Pg.196]    [Pg.377]    [Pg.79]    [Pg.151]   
See also in sourсe #XX -- [ Pg.127 , Pg.130 ]




SEARCH



Copolymers infrared spectroscopy, composition

Infrared Compositions

Infrared spectroscopy, copolymers composition determination

Magnetic composites infrared spectroscopy

Phase Composition Vibrational (Infrared and Raman) Spectroscopy

© 2024 chempedia.info