Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Industrial processes styrene

Friedel-Crafts alkylation using alkenes has important industrial appHcations. The ethylation of benzene with ethylene to ethylbenzene used in the manufacture of styrene, is one of the largest scale industrial processes. The reaction is done under the catalysis of AlCl in the presence of a proton source, ie, H2O, HCl, etc, although other catalysts have also gained significance. [Pg.551]

The ODH of ethylbenzene to styrene is a highly promising alternative to the industrial process of non-oxidative dehydrogenation (DH). The main advantages are lower reaction temperatures of only 300 500 °C and the absence of a thermodynamic equilibrium. Coke formation is effectively reduced by working in an oxidative atmosphere, thus the presence of excess steam, which is the most expensive factor in industrial styrene synthesis, can be avoided. However, this process is still not commercialized so far due to insufficient styrene yields on the cost of unwanted hydrocarbon combustion to CO and C02, as well as the formation of styrene oxide, which is difficult to remove from the raw product. [Pg.402]

The large demand for benzene is due to its use as a starting material in the production of polystyrene, acrylonitrile styrene butadiene rubber, nylons, polycarbonates and linear alkyl benzene detergent. All of these final chemical products that are suitable to form into consumer goods have multiple chemical transformations in various industrial processes to obtain them from benzene. Because the production of benzene does not involve a liquid adsorptive process on a zeolite, these processes are not described here but can be found in other sources. However, it is important to note that benzene is typically a large byproduct from an aromatics... [Pg.230]

Alkylation of benzene with ethylene gives ethylbenzene,283,284,308,309 which is the major source of styrene produced by catalytic dehydrogenation. High benzene ethylene ratios are applied in all industrial processes to minimize polyethylation. Polyethylbenzenes formed are recycled and transalkylated with benzene. Yields better than 98% are usually attained. Reactants free of sulfur impurities and water must be used. [Pg.257]

An industrial process for the synthesis of styrene through the transformation of 4-vinylcyclohexene the other possible cyclodimer has been developed. [Pg.729]

Chapter 7 is the climax of the book Here the educated student is asked to apply all that he/she has learned thus far to deal with many common practical industrial units. In Chapter 7 we start with a simple illustrative example in Section 7.1 and introduce five important industrial processes, namely fluid catalytic cracking in FCC units in Section 7.2, the UNIPOL process in Section 7.3, industrial steam reformers and methanators in Section 7.4, the production of styrene in Section 7.5, and the production of bioethanol in Section 7.6. [Pg.9]

What are the advantages of half-sandwich metallocene-based catalysts as compared with heterogeneous Ziegler-Natta catalysts in styrene polymerisation What are the possible consequences of this for developing industrial processes ... [Pg.273]

The other isomer of 5.11 with one axial and one equatorial phosphine can also be seen at low temperature. Indeed at low temperature that appears to be the more stable isomer. With styrene, as shown by 5.12 the branched (Mar-kovnikov) rather than the linear (anti-Markovnikov) isomer is the major one. However, remember that the experimental conditions of an actual industrial process, and that of the NMR experiments, are different. [Pg.90]

In fact, the standard in the industry is that styrene production is integrated from benzene and the ethylene raw material (e.g. propane) through styrene (and propylene oxide for the second process). Styrene production is part of an integrated petrochemical process. [Pg.1004]

Vulcanization is an industrial process applied to various polymers from the class of unsaturated polyhydrocarbons. The major practical use of vulcanized elastomers is the tire industry. Tires are made from various polymer blends, including natural rubber, typically between 20 and 50%. The other polymers used in various blends that can be vulcanized include copolymers such as poly(styrene-co-1,3-butadiene) or SBR, poly(acrylonitrile-co-1,3-butadiene-co-styrene) or ABS, poly(isobutylene-co-isoprene), poly(ethylene-co-propylene-co-1,4-hexadiene, etc. [Pg.455]

Emulsion polymerization is the basis of many industrial processes, and the production volume of latex technologies is continually expanding—a consequence of the many environmental, economic, health, and safety benefits the process has over solvent-based processes. A wide range of products are synthesized by emulsion polymerization, including commodity polymers, such as polystyrene, poly(acrylates), poly (methyl methacrylate), neoprene or poly(chloroprene), poly(tetrafluoroethylene), and styrene-butadiene rubber (SBR). The applications include manufacture of coatings, paints, adhesives, synthetic leather, paper coatings, wet suits, natural rubber substitutes, supports for latex-based antibody diagnostic kits, etc. ... [Pg.863]

Optically active alcohols, amines, and alkanes can be prepared by the metal catalyzed asymmetric hydrosilylation of ketones, imines, and olefins [77,94,95]. Several catalytic systems have been successfully demonstrated, such as the asymmetric silylation of aryl ketones with rhodium and Pybox ligands however, there are no industrial processes that use asymmetric hydrosilylation. The asymmetric hydrosilyation of olefins to alkylsilanes (and the corresponding alcohol) can be accomplished with palladium catalysts that contain chiral monophosphines with high enantioselectivities (up to 96% ee) and reasonably good turnovers (S/C = 1000) [96]. Unfortunately, high enantioselectivities are only limited to the asymmetric hydrosilylation of styrene derivatives [97]. Hydrosilylation of simple terminal olefins with palladium catalysts that contain the monophosphine, MeO-MOP (67), can be obtained with enantioselectivities in the range of 94-97% ee and regioselectivities of the branched to normal of the products of 66/43 to 94/ 6 (Scheme 26) [98.99]. [Pg.170]

Scheme 4.51 shows the process known to the bulk chemicals industry as SMPO, the styrene monomer-propylene oxide process. Styrene is used in polymers, and propylene oxide derivatives have a wide variety of uses, including as surfactants and in anti-freeze. For the bulk industry, the process is as follows. Addition of ethylene to benzene gives ethylbenzene, which undergoes air oxidation to give the hydroperoxide. Reaction of this with propylene, in the presence of a suitable catalyst, gives styrallyl alcohol and propylene oxide. Styrallyl alcohol is readily dehydrated to styrene. [Pg.103]

The styrene plastics industry has emerged over the past 30 years to become a major worldwide business. The industry has grown because the excellent balance of mechanical properties and processability of styrene plastics allow it to fill diverse market needs. The advent of workable industrial processes for both monomer and polymer and the fact that styrene plastics were made from once inexpensive raw materials have likewise contributed to the growth of the industry. In spite of the relative maturity of the science and the industry, styrene plastics remain a fruitful area for research. For example, the development of new materials having unique properties, such as fire and heat resistance, and the development of efficient energy and material-saving fabrication processes are expected to be the subject of extensive study in the future. [Pg.380]

Poly(phenylene ether or oxide) (PPE), A thermoplastic produced by catalytic polymerization of 2,6-dimethyl phenol (Fig. 1.3). For the sake of better processability, styrene copolymer-modified PPO is generally used in industrial practice. The service temperature of injection moulded and extruded parts in modified PPE is up to... [Pg.23]

Industrial Process Polymer Poly styrene Foam ignited at hot-wire cutting process, due to high voltage setting for nichrome wire at Polystyrene Molding Plant... [Pg.1170]


See other pages where Industrial processes styrene is mentioned: [Pg.69]    [Pg.214]    [Pg.116]    [Pg.1611]    [Pg.300]    [Pg.238]    [Pg.735]    [Pg.1037]    [Pg.214]    [Pg.391]    [Pg.238]    [Pg.539]    [Pg.71]    [Pg.71]    [Pg.465]    [Pg.499]    [Pg.1606]    [Pg.36]    [Pg.286]    [Pg.47]    [Pg.499]    [Pg.107]    [Pg.13]    [Pg.505]    [Pg.53]    [Pg.292]    [Pg.568]    [Pg.284]    [Pg.189]    [Pg.210]    [Pg.257]    [Pg.53]    [Pg.600]   
See also in sourсe #XX -- [ Pg.314 ]




SEARCH



Styrene process

© 2024 chempedia.info