Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inductively coupled plasma mass resonance

Inductively Coupled Plasma Mass Spectrometry Inductively Coupled Plasma Optical Emission Spectrometry Ion Cyclotron Resonance Ion Diffraction... [Pg.25]

Table 5.2 Summary of selected analytical methods for molecular environmental geochemistry. AAS Atomic absorption spectroscopy AFM Atomic force microscopy (also known as SFM) CT Computerized tomography EDS Energy dispersive spectrometry. EELS Electron energy loss spectroscopy EM Electron microscopy EPR Electron paramagnetic resonance (also known as ESR) ESR Electron spin resonance (also known as EPR) EXAFS Extended X-ray absorption fine structure FUR Fourier transform infrared FIR-TEM Fligh-resolution transmission electron microscopy ICP-AES Inductively-coupled plasma atomic emission spectrometry ICP-MS Inductively-coupled plasma mass spectrometry. Reproduced by permission of American Geophysical Union. O Day PA (1999) Molecular environmental geochemistry. Rev Geophysics 37 249-274. Copyright 1999 American Geophysical Union... Table 5.2 Summary of selected analytical methods for molecular environmental geochemistry. AAS Atomic absorption spectroscopy AFM Atomic force microscopy (also known as SFM) CT Computerized tomography EDS Energy dispersive spectrometry. EELS Electron energy loss spectroscopy EM Electron microscopy EPR Electron paramagnetic resonance (also known as ESR) ESR Electron spin resonance (also known as EPR) EXAFS Extended X-ray absorption fine structure FUR Fourier transform infrared FIR-TEM Fligh-resolution transmission electron microscopy ICP-AES Inductively-coupled plasma atomic emission spectrometry ICP-MS Inductively-coupled plasma mass spectrometry. Reproduced by permission of American Geophysical Union. O Day PA (1999) Molecular environmental geochemistry. Rev Geophysics 37 249-274. Copyright 1999 American Geophysical Union...
Hi) Methods based on mass spectrometry Spark-source mass spectrometry Glow-discharge mass spectrometry Inductively coupled-plasma mass spectrometry Electro-thermal vaporization-lCP-MS Thermal-ionization mass spectrometry Accelerator mass spectrometry Secondary-ion mass spectrometry Secondary neutral mass spectrometry Laser mass spectrometry Resonance-ionization mass spectrometry Sputter-initiated resonance-ionization spectroscopy Laser-ablation resonance-ionization spectroscopy... [Pg.208]

Liquid chromatography (LC) has already been described and is an excellent separation technique for compounds that are nonvolatile, thermally unstable and relatively polar in nature. The usual detectors for LC are based on refractive index, conductivity, amperometry, light scattering, UV and fluorescence, all of which have been discussed in Section 3.2. However, sometimes it is desirable to have a more powerful detector attached to an LC instrument and, as such, the following combinations are possible LC-infrared spectrometry, LC-atomic spectrometry, LC-inductively coupled plasma-mass spectrometry, LC-mass spectrometry, LC-UV-mass spectrometry, LC-nuclear magnetic resonance and even LC-nuclear magnetic resonance-mass spectrometry. [Pg.108]

The dimethylarsinoyl derivative of sulfated ribitol (see Fig. 2, compound 15) was isolated from the red alga Chondria crassicaulis (38). It had been observed as a major arsenical in C. crassicaulis by high performance liquid chroma-tography-inductively coupled plasma mass spectrometry (HPLC-ICPMS), and was initially reported as an unknown because it did not match any available standard (39). Subsequently, the compound was isolated and a chemical structure was proposed chiefly on nuclear magnetic resonance (NMR) data chemical synthesis of authentic material confirmed the proposed structure (38). This com-... [Pg.59]

Several spectroscopic methods have been used to monitor the levels of heavy metals in man, fossil fuels and environment. They include flame atomic absorption spectrometry (AAS), atomic emission spectroscopy (AES), graphite furnace atomic absorption sp>ectrometry (GFAAS), inductively coupled plasma-atomic emission sp>ectroscopy (ICP/AES), inductively coupled plasma mass spectrometry (ICP/MS), x-ray fluorescence sp>ectroscopy (XRFS), isotope dilution mass spectrometry (IDMS), electrothermal atomic absorption spectrometry (ETAAS) e.t.c. Also other spectroscopic methods have been used for analysis of the quality composition of the alternative fuels such as biodiesel. These include Nuclear magnetic resonance spectroscopy (NMR), Near infrared spectroscopy (NIR), inductively coupled plasma optical emission spectrometry (ICP-OES) e.t.c. [Pg.26]

Inductively coupled plasma mass spectrometry (ICP-MS), laser ablation ICP-MS (LA ICP-MS), thermal ionization mass spectrometry (TIMS), secondary ion mass spectrometry (SIMS), glow discharge mass spectrometry (GDMS), resonance ionization mass spectrometry (RIMS), and accelerator mass spectrometry (AMS) have been used successfully to measure uranimn concentrations and isotope ratios in a wide range of sample matrices. The specific details of the methods are described fully in the relevant sections of this encyclopedia. There are specific advantages associated with each method, which depend on the sample of interest and the information required. [Pg.4161]

During the last decades methods such as Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), Inductively Coupled Plasma Mass Spectroscopy (ICP-MS), and Resonance Ionization Mass spectrometry (RIMS) have decreased the need for selective radiochemical procedures. Many long-lived radionuclides today have lower detection limits if using, e.g., ICP-MS than if performing radiometric measurements with reasonable measuring times. At present, the half-life limit is a few hundred years, i.e., nuclides with longer half-hfe (e.g., Tc, Np, or Pu) should preferably be measured by ICP-MS and more short-... [Pg.2417]

DTPA = diethylenetriaminepentaacetic acid DL = detection limit EDTA = ethylenediaminetetraacetic acid ICP-MS = inductively coupled plasma mass spectrometry ISE = ion-selective electrode MCGE = membrane-coated graphite electrode NAP = 4-(/ -nitrophenylazo)-pyrocathecol PVC = poly(vinyl chloride RLS = resonance light scattering TBP = tri-n-butyl phosphate TOPO = tri- -octyl phosphine oxide XRF = X-ray fluorescence... [Pg.571]

Figure 1.13 Selected analytical techniques used for metallomics studies. ICP-OES, inductively coupled plasma optical emission spectroscopy, ICP-MS, inductively coupled plasma mass spectrometry LA-ICP-MS, laser ablation ICP-MS XRF, X-ray fluorescence spectroscopy PIXE, proton induced X-ray emission NAA, neutron activation analysis SIMS, secondary ion mass spectroscopy GE, gel electrophoresis LC, liquid chromatography GC, gas chromatography MS, mass spectrometry, which includes MALDI-TOF-MS, matrix-assisted laser desorption/ ionization time of flight mass spectrometry and ESI-MS, electron spray ionization mass spectrometry NMR, nuclear magnetic resonance PX, protein crystallography XAS, X-ray absorption spectroscopy NS, neutron scattering. Figure 1.13 Selected analytical techniques used for metallomics studies. ICP-OES, inductively coupled plasma optical emission spectroscopy, ICP-MS, inductively coupled plasma mass spectrometry LA-ICP-MS, laser ablation ICP-MS XRF, X-ray fluorescence spectroscopy PIXE, proton induced X-ray emission NAA, neutron activation analysis SIMS, secondary ion mass spectroscopy GE, gel electrophoresis LC, liquid chromatography GC, gas chromatography MS, mass spectrometry, which includes MALDI-TOF-MS, matrix-assisted laser desorption/ ionization time of flight mass spectrometry and ESI-MS, electron spray ionization mass spectrometry NMR, nuclear magnetic resonance PX, protein crystallography XAS, X-ray absorption spectroscopy NS, neutron scattering.
SkeUy Frame, E. M., and Uzgiris, E. E. (1998). GadoUnium determination in tissue samples by inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry in evaluation of the action of magnetic resonance imaging contrast agents. Analyst (London) 123(4), 675. [Pg.267]

ICP/MS. inductively coupled plasma and mass spectrometry used as a combined technique ICR. ion cyclotron resonance (spectroscopy)... [Pg.445]

The ion source is an essential component of all mass spectrometers where the ionization of a gaseous, liquid or solid sample takes place. In inorganic mass spectrometry, several ion sources, based on different evaporation and ionization processes, such as spark ion source, glow discharge ion source, laser ion source (non-resonant and resonant), secondary ion source, sputtered neutral ion source and inductively coupled plasma ion source, have been employed for a multitude of quite different application fields (see Chapter 9). [Pg.25]

Milgram, K. E. Abatement of spectral interferences in elemental mass spectrometry design and construction of inductively coupled plasma ion sources for Fourier Transform ion cyclotron resonance instrumentation, Ph. D. Thesis, University of Florida, 1997, Diss. Abstr. Int., B 1998, 59(2), 639. [Pg.149]


See other pages where Inductively coupled plasma mass resonance is mentioned: [Pg.86]    [Pg.87]    [Pg.71]    [Pg.6099]    [Pg.6391]    [Pg.6403]    [Pg.1594]    [Pg.1597]    [Pg.6390]    [Pg.6402]    [Pg.395]    [Pg.22]    [Pg.3979]    [Pg.2461]    [Pg.2485]    [Pg.1304]    [Pg.350]    [Pg.4]    [Pg.266]    [Pg.266]    [Pg.649]    [Pg.340]    [Pg.17]    [Pg.27]    [Pg.355]    [Pg.311]    [Pg.120]    [Pg.5]    [Pg.333]    [Pg.346]   
See also in sourсe #XX -- [ Pg.67 , Pg.97 ]




SEARCH



Coupled Plasma

Coupled resonances

Coupled resonators

Induction-coupled plasma

Inductive coupled plasma

Inductive coupling

Inductively couple plasma

Inductively coupled

Inductively coupled plasma mass

Mass plasma

Plasma resonance

Resonance coupling

Resonant coupling

© 2024 chempedia.info