Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Individual component analysis

R P. DiSanzo, J. L. Lane and R. E. Yoder, Application of state-of-the-art multidimensional high resolution gas cliromatography for individual component analysis of gasoline range hydrocar bons , 7. Chromatogr. Sci. 26 206-209 (1988). [Pg.404]

As a result, materials for medical devices and drug products must be tested for leachable components. Once a known toxic compound is discovered, it must be identified for the assessment of toxicity, followed by the monitoring of levels using validated methods as required by the FDA. This identification procedure could be a time-consuming process with traditional methods that are based on fractionation and individual component analysis. [Pg.173]

One has seen that the number of individual components in a hydrocarbon cut increases rapidly with its boiling point. It is thereby out of the question to resolve such a cut to its individual components instead of the analysis by family given by mass spectrometry, one may prefer a distribution by type of carbon. This can be done by infrared absorption spectrometry which also has other applications in the petroleum industry. Another distribution is possible which describes a cut in tei ns of a set of structural patterns using nuclear magnetic resonance of hydrogen (or carbon) this can thus describe the average molecule in the fraction under study. [Pg.56]

Boresch, S., Archontis, G., Karplus, M. Free energy simulations The meaning of the individual contributions from component analysis. Proteins Str. Funct. Genet., 20 (1994) 25-33... [Pg.146]

For example, the objects may be chemical compounds. The individual components of a data vector are called features and may, for example, be molecular descriptors (see Chapter 8) specifying the chemical structure of an object. For statistical data analysis, these objects and features are represented by a matrix X which has a row for each object and a column for each feature. In addition, each object win have one or more properties that are to be investigated, e.g., a biological activity of the structure or a class membership. This property or properties are merged into a matrix Y Thus, the data matrix X contains the independent variables whereas the matrix Ycontains the dependent ones. Figure 9-3 shows a typical multivariate data matrix. [Pg.443]

For mixture.s the picture is different. Unless the mixture is to be examined by MS/MS methods, usually it will be necessary to separate it into its individual components. This separation is most often done by gas or liquid chromatography. In the latter, small quantities of emerging mixture components dissolved in elution solvent would be laborious to deal with if each component had to be first isolated by evaporation of solvent before its introduction into the mass spectrometer. In such circumstances, the direct introduction, removal of solvent, and ionization provided by electrospray is a boon and puts LC/MS on a level with GC/MS for mixture analysis. Further, GC is normally concerned with volatile, relatively low-molecular-weight compounds and is of little or no use for the many polar, water soluble, high-molecular-mass substances such as the peptides, proteins, carbohydrates, nucleotides, and similar substances found in biological systems. LC/MS with an electrospray interface is frequently used in biochemical research and medical analysis. [Pg.59]

Second-law analysis looks at the individual components of an overall process to define the causes of lost work. Sometimes it focuses on the efficiency of a step and ratios the theoretical work needed to accomplish a change, eg, a separation, to that actually used. [Pg.83]

In the analytical chromatographic process, mixtures are separated either as individual components or as classes of similar materials. The mixture to be separated is first placed in solution, then transferred to the mobile phase to move through the chromatographic system. In some cases, irreversible interaction with the column leaves material permanently attached to the stationary phase. This process has two effects because the material is permanently attached to the stationary phase, it is never detected as leaving the column and the analysis of the mixture is incomplete additionally, the adsorption of material on the stationary phase alters the abiHty of that phase to be used in future experiments. Thus it is extremely important to determine the ultimate fate of known materials when used in a chromatographic system and to develop a feeling for the kinds of materials in an unknown mixture before use of a chromatograph. [Pg.105]

One of the main attractions of normal mode analysis is that the results are easily visualized. One can sort the modes in tenns of their contributions to the total MSF and concentrate on only those with the largest contributions. Each individual mode can be visualized as a collective motion that is certainly easier to interpret than the welter of information generated by a molecular dynamics trajectory. Figure 4 shows the first two normal modes of human lysozyme analyzed for their dynamic domains and hinge axes, showing how clean the results can sometimes be. However, recent analytical tools for molecular dynamics trajectories, such as the principal component analysis or essential dynamics method [25,62-64], promise also to provide equally clean, and perhaps more realistic, visualizations. That said, molecular dynamics is also limited in that many of the functional motions in biological molecules occur in time scales well beyond what is currently possible to simulate. [Pg.165]

For the most part, the elemental analysis data for the blends are consistent with a weighted average of the individual components. Also shown is the elemental analysis for some of the soluble products form WVGS 13423 in Table 10 As was observed for the WVGS 13421 products, hydrogenation increased the total hydrogen content and decreased the atomic C/H ratio. [Pg.220]

A satisfactory chromatographic analysis demands, a priori, on an adequate separation of the constituents of the sample that will permit the accurate quantitative evaluation of each component of interest. To achieve this, an appropriate phase system must be chosen so that the individual components of the mixture will be moved apart from one another in the column. In addition, their dispersion must be constrained sufficiently to allow all the solutes of interest to be eluted discretely. At this stage it is necessary to introduce the concept of the Reduced Chromatogram. [Pg.361]

Proximate analysis - a relatively low-cost analysis in which moisture content, volatile combustible matter, fixed carbon, and ash are determined. The fuel value of the sludge is calculated as the weighted average of the fuel values of its individual components. [Pg.559]

The literature of alkaloids can conveniently be divided into five sections, dealing with (1) the occurrence and distribution of these substances in plants (2) biogenesis, or the methods by which alkaloids are produced in the course of plant metabolism (3) analysis, ranging from the commercial and industrial estimation of particular alkaloids to the separation, purification and description of the individual components of the natural mixture of alkaloids, which normally occurs in plants (4) determination of structure and (5) pharmacological action. [Pg.811]

FIGURE 2.1 SEC analysis of a polymeric dextran sample (Mw = 1000) on Superdex peptide HR 10/50. The very high resolution between individual components of the sample is obtained by using two columns in series. Courtesy of T. Andersson. (Reproduced with permission from Amersham Pharmacia Biotech.)... [Pg.31]

An on-line supercritical fluid chromatography-capillary gas chromatography (SFC-GC) technique has been demonstrated for the direct transfer of SFC fractions from a packed column SFC system to a GC system. This technique has been applied in the analysis of industrial samples such as aviation fuel (24). This type of coupled technique is sometimes more advantageous than the traditional LC-GC coupled technique since SFC is compatible with GC, because most supercritical fluids decompress into gases at GC conditions and are not detected by flame-ionization detection. The use of solvent evaporation techniques are not necessary. SFC, in the same way as LC, can be used to preseparate a sample into classes of compounds where the individual components can then be analyzed and quantified by GC. The supercritical fluid sample effluent is decompressed through a restrictor directly into a capillary GC injection port. In addition, this technique allows selective or multi-step heart-cutting of various sample peaks as they elute from the supercritical fluid... [Pg.325]

The economic value of natural gas is primarily determined by the thermal energy it contains, which is expressed in British thermal units (Btu) or calorific value (CV). Other important physical properties comprise the liquid content, the burning characteristics, the dew point and the compressibility. In order to enable the calculation of these properties from its composition, a natural gas analysis should contain a detailed determination of all of the individual components, even in the low-concentration range. [Pg.386]

The first two aspects entail relatively high concentrations of surfactants. In the last case, trace amounts are to be determined. When performing surfactant analysis, preconcentration and/or separation of the different surfactant classes are prerequisites for identifying and quantifying the compound in question. Furthermore, the trend is to analyze the individual components of any surfactant mixture. [Pg.161]

The suppression effects associated with electrospray ionization have been discussed earlier although if the compounds present are similar in behaviour these may be minimal. The intention, when using chromatography as an introduction device, is to allow individual components to enter the mass spectrometer for analysis. The separation capability of HPLC has been discussed previously and it is not unusual, particularly when complex mixtures are being studied, to encounter electrospray spectra from more than one component. [Pg.173]

Calculations of economic profitability can only be predictive in the phase of process development, before a plant is on stream for a long time. Therefore, individual components of costs and market evaluations will bear some uncertainty. This uncertainty is relatively high for pharmaceuticals and agrochemicals. The impact of these uncertainties on the profitability of a process may be quantified by a sensitivity analysis. This analysis provides information about the sensitivity of the process economics to changes in parameters relevant for the profitability (investment costs, price and consumption of raw materials, utility unit costs, product value and demand, etc.), and therefore on the reliability of the result of the economic evaluation. In the early stages of process development, a high sensitivity indicates the areas requiring attention for continued R D work. [Pg.209]


See other pages where Individual component analysis is mentioned: [Pg.237]    [Pg.18]    [Pg.5020]    [Pg.697]    [Pg.237]    [Pg.18]    [Pg.5020]    [Pg.697]    [Pg.54]    [Pg.444]    [Pg.1718]    [Pg.2967]    [Pg.121]    [Pg.370]    [Pg.511]    [Pg.405]    [Pg.429]    [Pg.109]    [Pg.109]    [Pg.253]    [Pg.303]    [Pg.615]    [Pg.13]    [Pg.107]    [Pg.105]    [Pg.281]    [Pg.494]    [Pg.62]    [Pg.50]    [Pg.267]    [Pg.233]   
See also in sourсe #XX -- [ Pg.17 ]




SEARCH



Component analysis

Individual components

© 2024 chempedia.info