Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inactivation enzyme inhibitors

R = an aromatic moiety, = H, and R" = R" = CH ), which were expected to have a long-hved acyl enzyme species (26) that would react further to give inactivated enzyme. The compounds all act as P-lactamase inhibitors but they are poor synergists. Aged solutions of c1oxaci11in sulfone, where... [Pg.52]

This class of inhibitors usually acts irreversibly by permanently blocking the active site of an enzyme upon covalent bond formation with an amino acid residue. Very tight-binding, noncovalent inhibitors often also act in an irreversible fashion with half-Hves of the enzyme-inhibitor complex on the order of days or weeks. At these limits, distinction between covalent and noncovalent becomes functionally irrelevant. The mode of inactivation of this class of inhibitors can be divided into two phases the inhibitors first bind to the enzyme in a noncovalent fashion, and then undergo subsequent covalent bond formation. [Pg.322]

The efficiency of inactivation by covalent bond formation vs release of the reactive species into solution has been described by its partition ratio. The most efficient inactivators have catalytic partition ratios of 0, in which case each inhibitor molecule leads to inactivation of the enzyme. To this date, many of these inhibitors have been designed, and alternative names like suicide substrate, Trojan Horse inactivator, enzyme induced inactivator, inhibitor, and latent inactivator have been used for this class of inhibitors. A number of comprehensive reviews are available (26—32). [Pg.322]

The often fast binding step of the inhibitor I to the enzyme E, forming the enzyme inhibitor complex E-I, is followed by a rate-determining inactivation step to form a covalent bond. The evaluation of affinity labels is based on the fulfillment of the following criteria (/) irreversible, active site-directed inactivation of the enzyme upon the formation of a stable covalent linkage with the activated form of the inhibitor, (2) time- and concentration-dependent inactivation showing saturation kinetics, and (3) a binding stoichiometry of 1 1 of inhibitor to the enzyme s active site (34). [Pg.324]

A significant difference between pseudoirreversible inhibitors and mechanism-based inactivators is the reversibiUty of the inactivation. A complete evaluation of the mechanism involved would require evidence not only for the covalent enzyme-inhibitor complex, but also for its decomposition products and its rate of reactivation. It is often difficult to identify the active site amino acid residue covalently linked to the inhibitor because of the instabiUty of the complex. [Pg.324]

The enzyme catalyzes the hydrolysis of an amide bond linkage with water via a covalent enzyme-inhibitor adduct. Benzoxazinones such as 2-ethoxy-4H-3,l-benzoxazin-4-one [41470-88-6] (23) have been shown to completely inactivate the enzyme in a competitive and stoichiometric fashion (Eigure 5). The intermediate (25) is relatively stable compared to the enzyme-substrate adduct due to the electron-donating properties of the ortho substituents. The complex (25) has a half-life of reactivation of 11 hours. [Pg.324]

If the inhibitor combines irreversibly with the enzyme—for example, by covalent attachment—the kinetic pattern seen is like that of noncompetitive inhibition, because the net effect is a loss of active enzyme. Usually, this type of inhibition can be distinguished from the noncompetitive, reversible inhibition case since the reaction of I with E (and/or ES) is not instantaneous. Instead, there is a time-dependent decrease in enzymatic activity as E + I El proceeds, and the rate of this inactivation can be followed. Also, unlike reversible inhibitions, dilution or dialysis of the enzyme inhibitor solution does not dissociate the El complex and restore enzyme activity. [Pg.447]

The inactivation is normally a first-order process, provided that the inhibitor is in large excess over the enzyme and is not depleted by spontaneous or enzyme-catalyzed side-reactions. The observed rate-constant for loss of activity in the presence of inhibitor at concentration [I] follows Michaelis-Menten kinetics and is given by kj(obs) = ki(max) [I]/(Ki + [1]), where Kj is the dissociation constant of an initially formed, non-covalent, enzyme-inhibitor complex which is converted into the covalent reaction product with the rate constant kj(max). For rapidly reacting inhibitors, it may not be possible to work at inhibitor concentrations near Kj. In this case, only the second-order rate-constant kj(max)/Kj can be obtained from the experiment. Evidence for a reaction of the inhibitor at the active site can be obtained from protection experiments with substrate [S] or a reversible, competitive inhibitor [I(rev)]. In the presence of these compounds, the inactivation rate Kj(obs) should be diminished by an increase of Kj by the factor (1 + [S]/K, ) or (1 + [I(rev)]/I (rev)). From the dependence of kj(obs) on the inhibitor concentration [I] in the presence of a protecting agent, it may sometimes be possible to determine Kj for inhibitors that react too rapidly in the accessible range of concentration. ... [Pg.364]

KROGDAHL A, HOLM H (1981) Soybean proteinase inhibitors and human proteolytic enzymes selective inactivation of inhibitors by treatment with human gastric juice. /M/fr. Ill 2045-51. [Pg.180]

The magnitude of inhibition of polygalacturonase was found to be dependent on preincubation of inhibitor with the enzyme. Similar observations have been reported for other enzyme inhibitors (Shivaraj and Pattabiraman, 1980 Sharma and Pattabiraman, 1980 Padmanabhan and Shrasti, 1990). However, preincubation of the inhibitor with substrate did not show any effect on inhibitor activity. In contrast, Shivaraj and Pattabiraman (1980) and Buonocore et al. (1977), have observed inactivation of amylase inhibitor activity on pretreatment with starch. [Pg.804]

Not all enzyme inhibitors bind through reversible interactions. In some cases enzymes are inactivated by formation of covalent complexes with inhibitory molecules. [Pg.214]

Until now our discussions of enzyme inhibition have dealt with compounds that interact with binding pockets on the enzyme molecule through reversible forces. Hence inhibition by these compounds is always reversed by dissociation of the inhibitor from the binary enzyme-inhibitor complex. Even for very tight binding inhibitors, the interactions that stabilize the enzyme-inhibitor complex are mediated by reversible forces, and therefore the El complex has some, nonzero rate of dissociation—even if this rate is too slow to be experimentally measured. In this chapter we turn our attention to compounds that interact with an enzyme molecule in such a way as to permanendy ablate enzyme function. We refer to such compounds as enzyme inactivators to stress the mechanistic distinctions between these molecules and reversible enzyme inhibitors. [Pg.214]

Fig. 6. Difference spectra between xanthine oxidase inactivated with various pyra-zolo [3, 4-d] pyrimidines and the native enzyme. The spectra are believed to represent the increase in absorption occurring when Mo(VI) of native enzyme is converted to Mo(IV) complexed with the inhibitors. Spectra were obtained by treating the enzyme with inhibitors in the presence of xanthine, then admitting air, so as to re-oxidize the iron and flavin chromophores. The extinction coefficients, de, are expressed per mole of enzyme flavin. Since some inactivated enzyme was present, extinction coefficients per atom of molybdenum of active enzyme will be about 30% higher than these values. (Reproduced from Ref. 33, with the permission of Dr. V. Massey.)... Fig. 6. Difference spectra between xanthine oxidase inactivated with various pyra-zolo [3, 4-d] pyrimidines and the native enzyme. The spectra are believed to represent the increase in absorption occurring when Mo(VI) of native enzyme is converted to Mo(IV) complexed with the inhibitors. Spectra were obtained by treating the enzyme with inhibitors in the presence of xanthine, then admitting air, so as to re-oxidize the iron and flavin chromophores. The extinction coefficients, de, are expressed per mole of enzyme flavin. Since some inactivated enzyme was present, extinction coefficients per atom of molybdenum of active enzyme will be about 30% higher than these values. (Reproduced from Ref. 33, with the permission of Dr. V. Massey.)...
Dehydroarachidonic acid analogs in which one Z-olefinic unit is replaced by a triple bond are irreversible inhibitors of the lipoxygenasses which normally deliver dioxygen to the corresponding site of arachidonic acid. The inactivation appears to be a consequence of dioxygenation at the acetylinic unit to from a vinyl hydroperoxide which undergoes rapid 0-0 homolysis. Synthetic routes to these interesting enzyme inhibitors are outlined below. [Pg.369]

Another different class of inhibitors binds covalently to specific amino acids in the enzyme and these are referred to as irreversible inhibitors. The organophosphorus compounds, of which nerve gases are examples, inactivate enzymes which rely on the hydroxyl group of serine residues for their activity, e.g. cholinesterase (EC 3.1.1.8). [Pg.271]

In the earlier scheme, I represents a product formed by metabolism of the inhibitor by the enzyme. This product may be released into bulk solvent, or may interact (often covalently) with a suitably reactive component of the enzyme within the active site. This irreversibly inactivated enzyme complex is shown as El". There are two kinetic constants that can be obtained from relatively straightforward experiments with a suicide inhibitor. The Ki value is an equilibrium constant for the initial reversible step, and all the rate constants from the above scheme contribute to its value. The rate of irreversible inactivation of enzyme at a saturating concentration of the suicide inhibitor is given by fcinact. to which only k2> h, and k contribute (Silverman, 1995). At infinitely high concentrations of the inhibitor, the half-Ufe for inactivation is equal to ln2/ l inact ... [Pg.128]

Linear furanocoumarins (psoralens) inhibit P450s as mechanism-based inactivators (suicide inhibitors). Thus, species that produce psoralens may have evolved C4H enzymes with enhanced tolerance to these compounds. Recombinant C4H from the psoralen-producing species R. graveolens showed markedly slower inhibition kinetics with psoralens, and possibly biologically significant tolerance, compared to C4H from a species that does not produce the compounds (H. tuberosus) ... [Pg.153]

Another approach to the therapy of Parkinson s disease involves the use of enzyme inhibitors. For example, inhibition of the enzyme monoamine oxidase B (MAO-B) by selegiline (4.105) improves the duration of L-DOPA therapy because it inhibits the breakdown of dopamine but not of NE. Likewise, inhibitors of catechol-O-methyl-transferase (COMT) can also be exploited as agents for the treatment of Parkinson s disease. L-DOPA and dopamine become inactivated by methylation the COMT enzyme responsible for this metabolic transformation can be clocked by agents such as entacapone (4.106) or tolcapone (4.107), allowing higher levels of L-DOPA and dopamine to be achieved in the corpus striamm of the brain. [Pg.248]


See other pages where Inactivation enzyme inhibitors is mentioned: [Pg.354]    [Pg.354]    [Pg.451]    [Pg.385]    [Pg.152]    [Pg.404]    [Pg.46]    [Pg.322]    [Pg.324]    [Pg.345]    [Pg.517]    [Pg.2]    [Pg.103]    [Pg.466]    [Pg.78]    [Pg.361]    [Pg.215]    [Pg.217]    [Pg.235]    [Pg.125]    [Pg.732]    [Pg.240]    [Pg.245]    [Pg.23]    [Pg.355]    [Pg.110]    [Pg.134]    [Pg.135]    [Pg.274]    [Pg.276]    [Pg.1350]    [Pg.458]    [Pg.221]   
See also in sourсe #XX -- [ Pg.358 ]




SEARCH



Covalently binding enzyme inhibitors inactivation

Enzyme inactivators

Enzyme inhibitors

Enzymes enzyme inhibitor

Enzymes inactivation

INHIBITOR INACTIVATOR

Suicide enzyme-inactivator mechanism-based inhibitor

© 2024 chempedia.info