Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pattern kinetics

Toxicokinetic data The major factors responsible for differences in toxicity due to route of exposure include (1) differences in bioavaUabUity (absorption), (2) differences in metabolism (e.g., first-pass effects), and (3) differences in internal exposure pattern (kinetics). [Pg.264]

CO + O2 2CO2/Pt(1l0) Standing wave patterns - kinetic oscillations... [Pg.186]

All these patterns, which have been discussed in this chapter and in Chapter 6 in detail, can be used for many purposes, such as testing the validity of an assumed reaction scheme and its corresponding model and estimating parameters of a kinetic model based on the occurrence of patterns and predicting concentration dependences. This approach can be termed pattern kinetics or event-based kinetics. It is interesting that there is a remarkable resemblance between our patterns of coincidences, and the abstract and conceptual art of, for instance, FeUx De Boeck and Sol LeWitt. [Pg.390]

In some cases, magnetically induced transient twist distortions have been observed in both thermotropic (MBBA [89]) and lyotropic (PBG [90]) systems. In this case, backflow effects are allowed only in a nonlinear regime, for strong distortions. The physical origin of this phenomenon could be the faster response times of modulated structures, as compared with uniform ones. When the equilibrium director distribution is approached, i.e. a relaxation process is over, the transient structures disappear. The emergence and subsequent evolution of the spatial periodicity of the transient structures have been considered theoretically [89,90]. In addition, the pattern kinetics have been studied in detail experimentally [91] on a mixture of a polymer compound with a low-molecular-mass matrix. The polymer considerably increases the rotational viscosity of the substance and reduces the threshold for pattern formation. This indicates the possibility of recording the pattern using a video camera. A typical transient pattern is shown in Fig. 14 [91]. [Pg.526]

Keywords Activity pattern Kinetic parameters Selectivity Stmcture Surface properties... [Pg.11]

For hydrogenation of styrene and its derivatives over several cationic Rh complexes, in addition to the hyperpolarized multiplets of ethylbenzene the H NMR spectra contained similar polarized multiplets but shifted to a higher field [41,42]. These signals were attributed to the product molecules that have not yet detached from the metal center after the hydrogen-transfer stage was over (e.g., with the aromatic moiety r -coordinated to the Rh(I) center). The results demonstrate that the detachment process can be fairly slow on the NMR timescale. The use of chiral catalysts and/or asymmetrically substituted styrenes led to more complicated spectral patterns. Kinetic studies can be used to measure the rates of formation and decay of such catalyst-product complexes [43]. The fact that the observed product remains coordinated to the catalyst was confirmed [44] in experiments with polarization transfer from the product to the hydrogens of other ligands of the catalyst induced by cross relaxation. [Pg.151]

Equilibrium Theory. The general features of the dynamic behavior may be understood without recourse to detailed calculations since the overall pattern of the response is governed by the form of the equiUbrium relationship rather than by kinetics. Kinetic limitations may modify the form of the concentration profile but they do not change the general pattern. To illustrate the different types of transition, consider the simplest case an isothermal system with plug flow involving a single adsorbable species present at low concentration in an inert carrier, for which equation 30 reduces to... [Pg.261]

The equiHbrium approach should not be used for species that are highly sensitive to variations in residence time, oxidant concentration, or temperature, or for species which clearly do not reach equiHbrium. There are at least three classes of compounds that cannot be estimated weU by assuming equiHbrium CO, products of incomplete combustion (PlCs), and NO. Under most incineration conditions, chemical equiHbrium results in virtually no CO or PlCs, as required by regulations. Thus success depends on achieving a nearly complete approach to equiHbrium. Calculations depend on detailed knowledge of the reaction network, its kinetics, the mixing patterns, and the temperature, oxidant, and velocity profiles. [Pg.58]

As with the case of energy input, detergency generally reaches a plateau after a certain wash time as would be expected from a kinetic analysis. In a practical system, each of its numerous components has a different rate constant, hence its rate behavior generally does not exhibit any simple pattern. Many attempts have been made to fit soil removal (50) rates in practical systems to the usual rate equations of physical chemistry. The rate of soil removal in the Launder-Ometer could be reasonably well described by the equation of a first-order chemical reaction, ie, the rate was proportional to the amount of removable soil remaining on the fabric (51,52). In a study of soil removal rates from artificially soiled fabrics in the Terg-O-Tometer, the percent soil removal increased linearly with the log of cumulative wash time. [Pg.531]

Reaction Engineering. Electrochemical reaction engineering considers the performance of the overall cell design ia carrying out a reaction. The joining of electrode kinetics with the physical environment of the reaction provides a description of the reaction system. Both the electrode configuration and the reactant flow patterns are taken iato account. More ia-depth treatments of this topic are available (8,9,10,12). [Pg.88]

Nitration of 3-phenyl-1,2-benzisoxazole with fuming nitric acid has been shown to give dinitro products of undetermined substitution pattern (67AHC(8)277, p. 290>. However, more satisfactory studies have now been described, especially on the kinetics and mechanism of nitration of 3-methyl-l,2-benzisoxazole (77JCS(P2)47). Nitration in cold, concentrated mixed acids yields the 5-nitro derivative exclusively, nitration in 80-90% sulfuric acid occurring on the free base whereas at higher acidities the conjugate acid is the species involved in the nitration. [Pg.48]

Figure 16-27 compares the various constant pattern solutions for R = 0.5. The curves are of a similar shape. The solution for reaction kinetics is perfectly symmetrical. The cui ves for the axial dispersion fluid-phase concentration profile and the linear driving force approximation are identical except that the latter occurs one transfer unit further down the bed. The cui ve for external mass transfer is exactly that for the linear driving force approximation turned upside down [i.e., rotated 180° about cf= nf = 0.5, N — Ti) = 0]. The hnear driving force approximation provides a good approximation for both pore diffusion and surface diffusion. [Pg.1527]

FIG. 16-27 Constant pattern solutions for R = 0.5. Ordinant is cfor nfexcept for axial dispersion for which individual curves are labeled a, axial dispersion h, external mass transfer c, pore diffusion (spherical particles) d, surface diffusion (spherical particles) e, linear driving force approximation f, reaction kinetics. [from LeVan in Rodrigues et al. (eds.), Adsorption Science and Technology, Kluwer Academic Publishers, Dor drecht, The Nether lands, 1989 r eprinted with permission.]... [Pg.1528]

The rectangular isotherm has received special attention. For this, many of the constant patterns are developed fuUy at the bed inlet, as shown for external mass transfer [Klotz, Chem. Rev.s., 39, 241 (1946)], pore diffusion [Vermeulen, Adv. Chem. Eng., 2, 147 (1958) Hall et al., Jnd. Eng. Chem. Fundam., 5, 212 (1966)], the linear driving force approximation [Cooper, Jnd. Eng. Chem. Fundam., 4, 308 (1965)], reaction kinetics [Hiester and Vermeulen, Chem. Eng. Progre.s.s, 48, 505 (1952) Bohart and Adams, J. Amei Chem. Soc., 42, 523 (1920)], and axial dispersion [Coppola and LeVan, Chem. Eng. ScL, 38, 991 (1983)]. [Pg.1528]

A distinc tion is to be drawn between situations in which (1) the flow pattern is known in detail, and (2) only the residence time distribution is known or can be calculated from tracer response data. Different networks of reactor elements can have similar RTDs, but fixing the network also fixes the RTD. Accordingly, reaction conversions in a known network will be unique for any form of rate equation, whereas conversions figured when only the RTD is known proceed uniquely only for hnear kinetics, although they can be bracketed in the general case. [Pg.2087]

Literature A number of informative researches can be cited, but again the difficulties of experimentation and complicating factors have made the kinetic patterns difficult to generalize. The most investigated gas reactants have been oxygen and hydrogen and some chlorine systems. [Pg.2124]


See other pages where Pattern kinetics is mentioned: [Pg.963]    [Pg.963]    [Pg.110]    [Pg.35]    [Pg.963]    [Pg.963]    [Pg.110]    [Pg.35]    [Pg.299]    [Pg.733]    [Pg.811]    [Pg.1096]    [Pg.1613]    [Pg.1925]    [Pg.2817]    [Pg.2937]    [Pg.3068]    [Pg.6]    [Pg.22]    [Pg.109]    [Pg.2]    [Pg.295]    [Pg.286]    [Pg.339]    [Pg.507]    [Pg.269]    [Pg.510]    [Pg.513]    [Pg.514]    [Pg.515]    [Pg.309]    [Pg.136]    [Pg.504]    [Pg.258]    [Pg.1642]    [Pg.1877]    [Pg.2149]    [Pg.237]   
See also in sourсe #XX -- [ Pg.390 ]




SEARCH



© 2024 chempedia.info