Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

In the Mukaiyama aldol

The salt 18 was explored in the Mukaiyama aldol reaction with acetophenone, and a yield of 96% was obtained after 1 h at -78 °C (Scheme 11). When MejSiOTf was used as a catalyst, a yield of 0% was observed. Me3SiNTf3 and Et3SiNTf3 resulted in 12% and 8% yield, respectively. [Pg.355]

During the past decades, the scope of Lewis acid catalysts was expanded with several organic salts. The adjustment of optimal counter anion is of significant importance, while it predetermines the nature and intensity of catalytic Lewis acid activation of the reactive species. Discovered over 100 years ago and diversely spectroscopically and computationally investigated [131-133], carbocations stiU remain seldom represented in organocatalysis, contrary to analogous of silyl salts for example. The first reported application of a carbenium salt introduced the trityl perchlorate 51 (Scheme 49) as a catalyst in the Mukaiyama aldol-type reactions and Michael transformations (Scheme 50) [134-142]. [Pg.372]

While the ambiguity of the catalysis of the Diels-Alder reaction needs to be carefully elucidated, the application of the ferrocenyl carbocations in the Mukaiyama aldolization turned out evidently to be unrealisable due to their interaction with the TMS enol ether that produces TMSOTf, which proved readily to catalyze the aldolization [154]. [Pg.377]

In the Mukaiyama aldol additions of trimethyl-(l-phenyl-propenyloxy)-silane to give benzaldehyde and cinnamaldehyde catalyzed by 7 mol% supported scandium catalyst, a 1 1 mixture of diastereomers was obtained. Again, the dendritic catalyst could be recycled easily without any loss in performance. The scandium cross-linked dendritic material appeared to be an efficient catalyst for the Diels-Alder reaction between methyl vinyl ketone and cyclopentadiene. The Diels-Alder adduct was formed in dichloromethane at 0°C in 79% yield with an endo/exo ratio of 85 15. The material was also used as a Friedel-Crafts acylation catalyst (contain-ing7mol% scandium) for the formation of / -methoxyacetophenone (in a 73% yield) from anisole, acetic acid anhydride, and lithium perchlorate at 50°C in nitromethane. [Pg.126]

It appears likely that the reaction proceeds through the ene reaction pathway, although such an ene reaction pathway has not been previously recognized as a possible mechanism in the Mukaiyama aldol reaction. In general, an acyclic antiperiplanar transition-state model has been used to explain the formation of the syn-diastereomer from either ( )- or (Z)-silyl enol ethers [58]. However, the cyclic ene mechanism now provides another rationale for the. vyra-diastereose-lection regardless of the enol silyl ether geometiy (Figure 8C.7). [Pg.562]

The silatropic ene pathway, that is, direct silyl transfer from an silyl enol ether to an aldehyde, may be involved as a possible mechanism in the Mukaiyama aldol-type reaction. Indeed, ab initio calculations show that the silatropic ene pathway involving the cyclic (boat and chair) transition states for the BH3-promoted aldol reaction of the trihydrosilyl enol ether derived from acetaldehyde with formaldehyde is favored [60], Recently, we have reported the possible intervention of a silatropic ene pathway in the catalytic asymmetric aldol-type reaction of silyl enol ethers of thioesters [61 ]. Chlorine- and amine-containing products thus obtained are useful intermediates for the synthesis of carnitine and GABOB (Scheme 8C.26) [62],... [Pg.563]

In the Mukaiyama aldol reaction an aldehyde (1) reacts with a silyl enol ether (3) under Lewis-acid catalysis to yield the aldol adduct (4). The use of a chiral Lewis acid (L offers the opportunity to perform the reaction in an a.sym-metric manner (Scheme 1) [5]. [Pg.144]

In 1995 Carreira et al. [19] reported a catalytic variant of the asymmetric carbonyl-ene reaction (Scheme Ha). By treatment of the aldehyde 60 with 2 mol % of titanium catalyst 35, already used in the Mukaiyama aldol reaction, the / -hy-droxyketone 61 is formed in quantitative yield and with an excellent ee value. Here, the ene-compound, 2-methoxypropene, is used simultaneously as solvent in a large excess. The high en-antioselectivity is still limited to aldehydes similar to 60 benzaldehyde for instance is converted with an ee of only 66 %. [Pg.150]

In the Mukaiyama aldol reaction, Zr cationic catalysts can be used. They act very quickly and require only low catalyst loadings (0.5% [Cp2Zr(OTf)2 thf ). But, the reactions show only modest diastereoselectivity. ... [Pg.5317]

Optically active l,l -binaphthols are among the most important chiral ligands of a variety of metal species. Binaphthol-aluminum complexes have been used as chiral Lewis acid catalysts. The l,T-binaphthyl-based chiral ligands owe their success in a variety of asymmetric reactions to the chiral cavity they create around the metal center [107,108]. In contrast with the wide use of these binaphthyls, the polymer-supported variety has been less popular. The optically active and sterically regular poly(l,l -bi-naphthyls) 96 have been prepared by nickel-catalyzed dehalogenating polycondensation of dibromide monomer 95 (Sch. 7) [109] and used to prepare the polybinaphthyl aluminum(III) catalyst 97 this had much greater catalytic activity than the corresponding monomeric catalyst when used in the Mukaiyama aldol reaction (Eq. 29). Unfortunately no enantioselectivity was observed in the aldol reaction. [Pg.973]

Activation of the (f )-binolato-Ti(OiPr)2 (2) by highly acidic and sterically demanding alcohols as achiral rather than chiral activators is also effective to provide higher levels of enantioselectivity than those attained by the parent enantio-pure binolato-Ti(OiPr) catalyst (2) in the Mukaiyama aldol reaction of silyl enol ethers (Eq. (7.22)) [55]. [Pg.202]

Trost and coworkers developed a chiral zinc phenoxide for the asymmetric aldol reaction of acetophenone or hydroxyacetophenone with aldehydes (equations 62 and 63) . This method does not involve the prior activation of the carbonyls to silyl enol ethers as in the Mukaiyama aldol reactions. Shibasaki and coworkers employed titanium phenoxide derived from a phenoxy sugar for the asymmetric cyanosilylation of ketones (equation 64). 2-Hydroxy-2 -amino-l,l -binaphthyl was employed in the asymmetric carbonyl addition of diethylzinc , and a 2 -mercapto derivative in the asymmetric reduction of ketones and carbonyl allylation using allyltin ° . ... [Pg.691]

A similar aluminum cation was also available in the Mukaiyama-aldol reaction. It is worth noting that the t-butyldimethylsilyloxy (TBSO) group, which otherwise is unable to make chelation complex with neutral bidentate Lewis acids, is under chelation control with excess Me2AlCl or MeAlfJh. [12]. Aldehyde and ketone carbonyls are capable of participating in the chelation-controlled aldol reaction to give anti-6 with high diastereoselectivity (Scheme 6.4). [Pg.194]

The utility of BF3-OEt2, a monodentate Lewis acid, for acyclic stereocontrol in the Mukaiyama aldol reaction has been demonstrated by Evans et al. (Scheme 10.3) [27, 28]. The BF3-OEt2-mediated reaction of silyl enol ethers (SEE, ketone silyl enolates) with a-unsubstituted, /falkoxy aldehydes affords good 1,3-anti induction in the absence of internal aldehyde chelation. The 1,3-asymmetric induction can be reasonably explained by consideration of energetically favorable conformation 5 minimizing internal electrostatic and steric repulsion between the aldehyde carbonyl moiety and the /i-substituents. In the reaction with anti-substituted a-methyl-/ -alkoxy aldehydes, the additional stereocontrol (Felkin control) imparted by the a-substituent achieves uniformly high levels of 1,3-anti-diastereofacial selectivity. [Pg.411]

It appears likely that the reaction proceeds through an ene reaction pathway. Such an ene reaction pathway has not been previously recognized as a possible mechanism in the Mukaiyama aldol condensation. Usually, an acyclic antiperi-... [Pg.1100]

Copper(II) complexes of two imino nitrogen atoms belonging to chiral oxazoline and sulfoximine moieties (70) are able to elicit asymmetric consequences in the Mukaiyama-aldol reaction of enol silyl ethers and a-keto esters/ ... [Pg.119]

The Lewis acidic nature of these catalysts has permitted their extended use in the Mukaiyama aldol reaction. In this application of CBS reagents, one such example involved the condensation of ketene acetals 72 with aldehydes 73 to produce adducts 74.20... [Pg.14]

The reaction can be applied to silyl enol esters as well. Good asymmetric induction can be achieved in the Mukaiyama aldol reaction. The reaction of silyl enol thioether 246 and nonanal, for example, gave 247 in 60% yield and in 93% ee when the (/ )-BINOL-titanium catalyst shown was used. In this work, the reaction was also done in supercritical fluoroform and in supercritical carbon dioxide. A similar reaction was reported using catalysts closely related to 244 and dichloromethane as the solvent.Chiral oxazaborolidine catalysts have also been shown to be effective for enantioselective Mukaiyama aldol reactions. [Pg.758]

Bidentate Lewis acid. This useful catalyst (1) with a high propensity for double coordination of the carbonyl group is prepared from the corresponding phenol and two equivalents of McjAI in CH Clj at room temperature. It catalyzes the reduction of 5-nonanone by BujSnH at -78° in 86% yield, whereas a reaction in the presence of the monodentate 0-dimethylaluminum 2,6-xylenoxide affords 5-nonanol in only 6%.. Accordingly, different catalytic efficiencies are also found in the Mukaiyama aldol reaction (e.g., 87% vs. 0% in the reaction between 1-trimethylsiloxy-l-cyclohexene and benzaldehyde) and the Claisen rearrangement of (fil-cinnamyl vinyl ether (96% vs. 0%). The contrasting ( >Zi-selectivity of the Michael adducts also reflects the different coordination states. [Pg.133]

Aldol and imino-aldol reactions. A Yb complex prepared from YbfOTflj and a C -symmetric a,a -bistriflamidobibenzyl has been used in the Mukaiyama aldol reaction," resulting in moderate asymmetric induction. Imines are activated toward enol derivatives, such as ketene silyl ethers. iV-(a-aminoalkyl)benzotriazoles are suitable surrogates of imines. One-pot syntheses of p-amino esters and ketones can also be achieved. [Pg.401]

Kobayashi and coworkers further developed a new immobilizing technique for metal catalysts, a PI method [58-61]. They originally used the technique for palladium catalysts, and then applied it to Lewis acids. The PI method was successfully used for the preparation of immobilized Sc(OTf)3. When copolymer (122) was used for the microencapsulation of Sc(OTf)3, remarkable solvent effects were observed. Random aggregation of copolymer (122)-Sc(OTf)3 was obtained in toluene, which was named as polymer incarcerated (PI) Sc(OTf)3. On the other hand, spherical micelles were formed in THF-cyclohexane, which was named polymer-micelle incarcerated (PMI) Sc(OTf)3.. PMI Sc(OTf)3 worked well in the Mukaiyama-aldol reaction of benzaldehyde with (123) and showed higher catalytic activity compared to that of PI Sc(OTf)3 mainly due to its larger surface area of PMI Sc(OTf)3. This catalyst was also used in other reactions such as Mannich-type (123) and (125) and Michael (127) and (128) reactions. For Michael reactions, inorganic support such as montmorilonite-enwrapped Scandium is also an efficient catalyst [62]. [Pg.508]

M. Woyciechowska, G. Forcher, S. Buda, J. Mlynarski, General switch in regioselectivity in the Mukaiyama aldol reaction of silyloxyfuran with aldehydes in aqueous solvents, Chem. Commun. 48 (2012) 11029-11031. [Pg.288]

Alternatively, a Friedel-Crafts mechanism has been proposed to account for bond formation via the Mukaiyama aldol reaction. As stated, attack of the enol silane 11 on the activated aldehyde 12 provides carbocation 13. Prior to silyl group transfer or outright silyl cleavage seen in the mechanism above, removal of the a-hydrogen regenerates the enol silane 14. While highly dependent on specific reaction conditions, the isolation of 15 leads to the suggestion of 14 as a potential intermediate in the Mukaiyama aldol reaction. [Pg.504]


See other pages where In the Mukaiyama aldol is mentioned: [Pg.132]    [Pg.34]    [Pg.132]    [Pg.298]    [Pg.942]    [Pg.127]    [Pg.2209]    [Pg.2214]    [Pg.2228]    [Pg.862]    [Pg.126]    [Pg.127]    [Pg.301]    [Pg.244]    [Pg.343]    [Pg.507]    [Pg.508]   
See also in sourсe #XX -- [ Pg.1353 , Pg.1354 ]




SEARCH



In the Mukaiyama aldol reaction

Mukaiyama

The Mukaiyama Aldol

© 2024 chempedia.info