Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chirality importance

C4H10O2. There are five glycols of this formula, three chiral. They are colourless, rather viscous liquids. The important isomers are ... [Pg.72]

An important distinction among surfaces and interfaces is whether or not they exliibit mirror synnnetry about a plane nonnal to the surface. This synnnetry is particularly relevant for the case of isotropic surfaces (co-synnnetry), i.e. ones that are equivalent in every azunuthal direction. Those surfaces that fail to exliibit mirror synnnetry may be tenned chiral surfaces. They would be expected, for example, at the boundary of a liquid comprised of chiral molecules. Magnetized surfaces of isotropic media may also exliibit this synnnetry. (For a review of SFIG studies of chiral interfaces, the reader is referred to [68]. ... [Pg.1286]

Given the interest and importance of chiral molecules, there has been considerable activity in investigating die corresponding chiral surfaces [, and 70]. From the point of view of perfomiing surface and interface spectroscopy with nonlinear optics, we must first examhie the nonlinear response of tlie bulk liquid. Clearly, a chiral liquid lacks inversion synnnetry. As such, it may be expected to have a strong (dipole-allowed) second-order nonlinear response. This is indeed true in the general case of SFG [71]. For SHG, however, the pemiutation synnnetry for the last two indices of the nonlinear susceptibility tensor combined with the... [Pg.1286]

This example illustrates a subtle control of a chemical reaction by a delicate manipulation of tire stereochemical environment around a metal centre dictated by tire selection of tire ligands. This example hints at tire subtlety of nature s catalysts, tire enzymes, which are also typically stereochemically selective. Chiral catalysis is important in biology and in tire manufacture of chemicals to regulate biological functions, i.e., phannaceuticals. [Pg.2704]

The H4 system is the prototype for many four-elecbon reactions [34]. The basic tetrahedral sfructure of the conical intersection is preserved in all four-electron systems. It arises from the fact that the four electrons are contributed by four different atoms. Obviously, the tefrahedron is in general not a perfect one. This result was found computationally for many systems (see, e.g., [37]). Robb and co-workers [38] showed that the structure shown (a tetraradicaloid conical intersection) was found for many different photochemical transformations. Having the form of a tetrahedron, the conical intersection can exist in two enantiomeric structures. However, this feature is important only when chiral reactions are discussed. [Pg.340]

Clearly, the next step is the handling of a molecule as a real object with a spatial extension in 3D space. Quite often this is also a mandatory step, because in most cases the 3D structure of a molecule is closely related to a large variety of physical, chemical, and biological properties. In addition, the fundamental importance of an unambiguous definition of stereochemistry becomes obvious, if the 3D structure of a molecule needs to be derived from its chemical graph. The moleofles of stereoisomeric compounds differ in their spatial features and often exhibit quite different properties. Therefore, stereochemical information should always be taken into ac-count if chiral atom centers are present in a chemical structure. [Pg.91]

Chirality codes are used to represent molecular chirality by a fixed number of de-.scriptors. Thc.se descriptors can then be correlated with molecular properties by way of statistical methods or artificial neural networks, for example. The importance of using descriptors that take different values for opposite enantiomers resides in the fact that observable properties are often different for opposite enantiomers. [Pg.420]

Most importantly, enantioselectivity benefits considerably from the use of water. This effect could be a result of water exerting a favourable influence on the cisoid - transoid equilibrium. Unfortunately, little is known of the factors that affect this equilibrium. Alternatively, and more likely, water enhances the efficiency of the arene - arene interactions. There is support for this observation"" . Since arene-arene interactions are held responsible for the enantioselectivify in many reactions involving chiral catalysts, we suggest that the enhancement of enantioselectivity by water might well be a general phenomenon. [Pg.96]

Alcohols can be synthesized by the addition of carbanions to carbonyl compounds (W.C. Still, 1976) or epoxides. Both types of reactions often produce chiral centres, and stereoselectivity is an important aspect of these reactions. [Pg.44]

The general syntheses of alkenes (p. 28 — 44) and 1,2-dihydroxy compounds (p. 50—54 and 123 — 132) are not repeated here. But there is an important chiral pool" for chiral 1,2-disubstituted compounds, namely a-amino acids. [Pg.202]

Benzyl bromide can be converted into ethylbenzene (731) by the reaction of Me4Sn. The use of HMPA as a solvent is important. Overall inversion of configuration takes place at the chiral center of deuterated benzyl bro-mide[598]. The cyanomethyiation[599] and methoxymethyiation[600] of aromatic rings are carried out by the reaction of cyanomethyltributyltin (732) and methoxymethyltributyltin. [Pg.237]

The cyclic 2,4-dienoate 184, formed by the Pd-catalyzed cyclization of the 1,6-enyne 183, reacted with 154 to form the azulene derivative 185[118], The 3-methylenepyrrolidine 188 is formed by the reaction of the Zn reagent 186 with the chiral imine 187 with high diastereomeric excess. The structure of the allylic ethers is important for obtaining high diastereoselectivity[l 19],... [Pg.315]

One final very important point Everything we have said in this section concerns molecules that have one and only one chirality center molecules with more than one chirality center may or may not be chiral Molecules that have more than one chirality center will be discussed m Sections 7 10 through 7 13... [Pg.285]

Section 7 8 Both enantiomers of the same substance are identical m most of then-physical properties The most prominent differences are biological ones such as taste and odor m which the substance interacts with a chiral receptor site m a living system Enantiomers also have important conse quences m medicine m which the two enantiomeric forms of a drug can have much different effects on a patient... [Pg.316]

In the early days following the discovery of chirality it was thought that only molecules of the type CWXYZ, multiply substituted methanes, were important in this respect and it was said that a molecule with an asymmetric carbon atom forms enantiomers. Nowadays, this definition is totally inadequate, for two reasons. The first is that the existence of enantiomers is not confined to molecules with a central carbon atom (it is not even confined to organic molecules), and the second is that, knowing what we do about the various possible elements of symmetry, the phrase asymmetric carbon atom has no real meaning. [Pg.79]

In organic chemistry there are many important molecules that contain two or more groups each of which, in isolation, would be chiral. A simple example is that of 2,3-difluorobutane, shown in Figure 4.9. The molecule can be regarded as a substituted ethane and we assume that, as in ethane itself, the stable sttucture is one in which one CFIFCFI3 group is staggered relative to the other. [Pg.80]

In Chapter 4, on molecular symmetry, 1 have added two new sections. One of these concerns the relationship between symmetry and chirality, which is of great importance in synthetic organic chemistry. The other relates to the connection between the symmetry of a molecule and whether it has a permanent dipole moment. [Pg.468]

In most cases, the proteia is immobilized onto y-aminopropyl sUica and covalently attached usiag a cross-linking reagent such as -carbonyl diimidazole. The tertiary stmcture or three dimensional organization of proteias are thought to be important for their activity and chiral recognition. Therefore, mobile phase conditions that cause proteia "deaaturatioa" or loss of tertiary stmcture must be avoided. [Pg.66]

One of the newer and more fmitful developments in this area is asymmetric hydroboration giving chiral organoboranes, which can be transformed into chiral carbon compounds of high optical purity. Other new directions focus on catalytic hydroboration, asymmetric aHylboration, cross-coupling reactions, and appHcations in biomedical research. This article gives an account of the most important aspects of the hydroboration reaction and transformations of its products. For more detail, monographs and reviews are available (1—13). [Pg.308]

Among chiral dialkylboranes, diisopinocampheylborane (8) is the most important and best-studied asymmetric hydroborating agent. It is obtained in both enantiomeric forms from naturally occurring a-pinene. Several procedures for its synthesis have been developed (151—153). The most convenient one, providing product of essentially 100% ee, involves the hydroboration of a-pinene with borane—dimethyl sulfide in tetrahydrofuran (154). Other chiral dialkylboranes derived from terpenes, eg, 2- and 3-carene (155), limonene (156), and longifolene (157,158), can also be prepared by controlled hydroboration. A more tedious approach to chiral dialkylboranes is based on the resolution of racemates. /n j -2,5-Dimethylborolane, which shows excellent enantioselectivity in the hydroboration of all principal classes of prochiral alkenes except 1,1-disubstituted terminal double bonds, has been... [Pg.311]

Chiral Smectic. In much the same way as a chiral compound forms the chiral nematic phase instead of the nematic phase, a compound with a chiral center forms a chiral smectic C phase rather than a smectic C phase. In a chiral smectic CHquid crystal, the angle the director is tilted away from the normal to the layers is constant, but the direction of the tilt rotates around the layer normal in going from one layer to the next. This is shown in Figure 10. The distance over which the director rotates completely around the layer normal is called the pitch, and can be as small as 250 nm and as large as desired. If the molecule contains a permanent dipole moment transverse to the long molecular axis, then the chiral smectic phase is ferroelectric. Therefore a device utilizing this phase can be intrinsically bistable, paving the way for important appHcations. [Pg.194]


See other pages where Chirality importance is mentioned: [Pg.149]    [Pg.149]    [Pg.171]    [Pg.1714]    [Pg.2543]    [Pg.2544]    [Pg.2565]    [Pg.2966]    [Pg.77]    [Pg.574]    [Pg.196]    [Pg.125]    [Pg.265]    [Pg.66]    [Pg.106]    [Pg.155]    [Pg.396]    [Pg.519]    [Pg.81]    [Pg.60]    [Pg.61]    [Pg.63]    [Pg.66]    [Pg.70]    [Pg.186]    [Pg.187]    [Pg.323]    [Pg.62]    [Pg.193]    [Pg.200]   
See also in sourсe #XX -- [ Pg.247 ]




SEARCH



© 2024 chempedia.info