Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1.1- bidentate Lewis acid

In summary, the effects of a number of important parameters on the catalysed reaction between 2.4 and 2.5 have been examined, representing the first detailed study of Lewis-acid catalysis of a Diels-Alder reaction in water. Crucial for the success of Lewis-acid catalysis of this reaction is the bidentate character of 2.4. In Chapter 4 attempts to extend the scope of Lewis-acid catalysis of Diels-Alder reactions in water beyond the restriction to bidentate substrates will be presented. [Pg.63]

Careful examination of literature reporting Lewis-acid catalysis of Diels-Alder reactions in combination with kinetic investigations indicate that bidentate (or multidentate) reactants are required in order to ensure efficient catalysis in water. Moreover, studies of a number of model dienophiles revealed that a potentially chelating character is not a guarantee for coordination and subsequent catalysis. Consequently extension of the scope in this direction does not seem feasible. [Pg.119]

The enantioselective inverse electron-demand 1,3-dipolar cycloaddition reactions of nitrones with alkenes described so far were catalyzed by metal complexes that favor a monodentate coordination of the nitrone, such as boron and aluminum complexes. However, the glyoxylate-derived nitrone 36 favors a bidentate coordination to the catalyst. This nitrone is a very interesting substrate, since the products that are obtained from the reaction with alkenes are masked a-amino acids. One of the characteristics of nitrones such as 36, having an ester moiety in the a position, is the swift E/Z equilibrium at room temperature (Scheme 6.28). In the crystalline form nitrone 36 exists as the pure Z isomer, however, in solution nitrone 36 have been shown to exists as a mixture of the E and Z isomers. This equilibrium could however be shifted to the Z isomer in the presence of a Lewis acid [74]. [Pg.233]

One of the problems related to the Lewis acid activation of a,/ -unsaturated carbonyl compounds for the reaction with a nitrone is the competitive coordination of the nitrone and the a,/ -unsaturated carbonyl compound to the Lewis acid [30]. Calculations have shown that coordination of the nitrone to the Lewis acid can be more feasible than a monodentate coordination of a carbonyl compound. However, this problem could be circumvented by the application of alkenes which allow a bidentate coordination to the Lewis acid which is favored over the monodentate coordination. [Pg.322]

Allylsilanes or allylstannanes in the presence of a bidentate Lewis acid such as tin(IV) chloride, titanium(IV) chloride, zinc chloride, and magnesium bromide as well as diallylzinc, are promising choices (Table 1). [Pg.219]

Allyltrialkoxy- or -tris(dialkylamino)titanium reagents are not capable of chelation-controlled addition reactions with oxy- or amino-substituted carbonyl compounds due to their low Lewis acidity87. To attain chelation control, the application of allylsilanes (Section 1.3.3.3.5.2.2.) and allylstannanes (Section I.3.3.3.6.I.3.2.) in the presence of bidentate Lewis acids like titanium(IV) chloride, tin(lV) chloride or magnesium bromide are the better options. [Pg.417]

Diiithium 2,2 -methyienebis(4,6-di-fert-butylphenoxide) as a bidentate Lewis acid in organic synthesis [111]... [Pg.135]

Bidentate binding of two Lewis acidic boron centers to one methoxide anion was first reported in 1967 [241]. Further examples did not appear until 1985 [242]. Today, other bis(boronates) like 152 and 154-158 (Fig. 41) are known that can be applied to the selective complexation of amines and diamines [243-247]. [Pg.43]

Keywords Group 13 metals (aluminum, gallium, indium, thalhum), Ambidentate ligands. Phosphorus-nitrogen bidentate ligands, Pyridyl phosphanes, Aminoiminophosphoranes, Lewis acid catalysis... [Pg.85]

The stereochemical outcome of the Mukaiyama reaction can be controlled by the type of Lewis acid used. With bidentate Lewis acids the aldol reaction led to the anti products through a Cram chelate control [366]. Alternatively, the use of a monoden-tate Lewis acid in this reaction led to the syn product through an open Felkin-Anh... [Pg.156]

Magnesium(II) is a milder Lewis acid than traditionally used ones such as boron(III), alumi-num(III), or titanium(IV). A characteristic feature of Mg11 is the presence of coordination sites which are occupied by Lewis bases other than counter anions. By using bidentate Lewis-basic ligands, it is therefore possible to form rigid stereochemical environments. [Pg.401]

Ally 1-tin compounds are employed as more reactive allylating agents. Because of their high reactivity, less active catalysts (TX species having mild Lewis acidity) or less reactive substrates are often required (Scheme 23).88,89 In addition to carbonyl compounds as substrates, allylation reactions of imines have been also reported.90 Also, a binuclear TiIV Lewis acid has been developed (compound (C) in Scheme 23), which shows higher catalytic activity than the mononuclear analogue (D) because of bidentate coordination to the carbonyl moiety of the substrate.91... [Pg.408]

In stereoselective reactions, Zn11 Lewis acids work well to achieve high selectivities (Scheme 54). Chiral complexes of Zn11 with chiral bis(oxazoline) ligands act as effective catalysts in Diels-Alder reactions of reactive dienes with dienophiles having bidentate chelating moieties such as... [Pg.422]

Complex with a chloride salt. The organotin compound is a powerful bidentate Lewis acid, binding the chloride ion. [Pg.395]

The 1,3-dipolar cycloaddition of nitrones to vinyl ethers is accelerated by Ti(IV) species. The efficiency of the catalyst depends on its complexation capacity. The use of Ti( PrO)2Cl2 favors the formation of trans cycloadducts, presumably, via an endo bidentate complex, in which the metal atom is simultaneously coordinated to the vinyl ether and to the cyclic nitrone or to the Z-isomer of the acyclic nitrones (800a). Highly diastereo- and enantioselective 1,3-dipolar cycloaddition reactions of nitrones with alkenes, catalyzed by chiral polybi-naphtyl Lewis acids, have been developed. Isoxazolidines with up to 99% ee were obtained. The chiral polymer ligand influences the stereoselectivity to the same extent as its monomeric version, but has the advantage of easy recovery and reuse (800b). [Pg.358]

Reactions involving bimetallic catalysts, either homo-dinuclear or hetero-bimetallic complexes, and chemzymes were highlighted by Steinhagen and Helmchen96c in 1996. Some examples are discussed in Chapter 2. Among these examples, Shibasaki s reports have been of particular significance.97 Shibasaki s catalyst is illustrated as 130, which consists of one central metal M1 (La+3, Ba+2, or A1+3), three other metal ions (M2)+ [(M2)+ can be Li+, Na+, or K+], and three bidentated ligands, such as (R)- or (iS )-BINOL. The catalyst exhibits both Lewis acidic properties because of the existence of central metal and the Lewis basic properties because of the presence of the outer metal ions. [Pg.488]

The first example of a stable 1,1-bidentate Lewis acid based on boron and zirconium has been reported [35]. The synthesis of 22 is outlined in Scheme 7.12. Treatment of hex-l-yne with HBBr2 Me2S followed by conversion of the dibromoboronic ester to the corresponding alkenyl boronic acid and esterification with propane-1,3-diol provided the alkenyl boronic ester. Hydrozirconation of this compound with 3 equivalents of the Schwartz reagent, Cp2Zr(H)Cl [57], afforded the desired product 22 in 86% yield. [Pg.243]

Figure 4 Structures of Lewis acid-base adducts of a bidentate 72 and a macrocyclic Lewis base 76. Figure 4 Structures of Lewis acid-base adducts of a bidentate 72 and a macrocyclic Lewis base 76.
Bis(stannyl halides) of suitable geometry can act as bidentate Lewis acids. The compounds XPh2Sn(CI I2) SnPh2X, n= 1, 2, or 3, all form 1 1 adducts 29 with halide ion, preferentially chelating F rather than CL or BL. [Pg.845]


See other pages where 1.1- bidentate Lewis acid is mentioned: [Pg.47]    [Pg.49]    [Pg.107]    [Pg.164]    [Pg.177]    [Pg.234]    [Pg.4]    [Pg.5]    [Pg.188]    [Pg.255]    [Pg.60]    [Pg.214]    [Pg.214]    [Pg.395]    [Pg.43]    [Pg.277]    [Pg.166]    [Pg.520]    [Pg.17]    [Pg.1014]    [Pg.1015]    [Pg.321]    [Pg.101]    [Pg.326]    [Pg.522]    [Pg.161]    [Pg.1]    [Pg.20]    [Pg.49]    [Pg.290]   
See also in sourсe #XX -- [ Pg.81 ]




SEARCH



Bidentates

Lewis bidentate

© 2024 chempedia.info