Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Michael transform

With strategic bond guidance, it is easy to find 2-Gp transform disconnections even if neither FG of an effective retron is present. In the case of the bridged aldehyde 160, recognition of the strategic bond shown (in bold face) keys FGI processes in both directions from the bond, which successfully establish the aldol retron leading to molecular disconnection by a sequence of aldol and Michael transforms, to generate a simple chiral precursor.31... [Pg.61]

The Y appendage of 2-cyclohexenone 191 cannot be directly disconnected by an alkylation transform. (y-Extended enolates derived from 2-cyclohexenones undergo alkylation a- rather than y- to the carbonyl group). However, 191 can be converted to 192 by application of the retro-Michael transform. The synthesis of 192 from methoxybenzene by way of the Birch reduction product 193 is straightforward. Another synthesis of 191 (free acid) is outlined in... [Pg.71]

Besides the Michael addition-initiated domino reactions presented here, a multitude of other anionic domino reactions exist. Many of these take advantage of an incipient SN-type reaction (for a discussion, see above). In addition to the presented SN/Michael transformations [97, 98, 100], a SN/retro-Dieckmann condensation was described by Rodriguez and coworkers, which can be used for the construction of substituted cycloheptanes as well as octanes [123]. Various twofold SN-type domino... [Pg.80]

During the past decades, the scope of Lewis acid catalysts was expanded with several organic salts. The adjustment of optimal counter anion is of significant importance, while it predetermines the nature and intensity of catalytic Lewis acid activation of the reactive species. Discovered over 100 years ago and diversely spectroscopically and computationally investigated [131-133], carbocations stiU remain seldom represented in organocatalysis, contrary to analogous of silyl salts for example. The first reported application of a carbenium salt introduced the trityl perchlorate 51 (Scheme 49) as a catalyst in the Mukaiyama aldol-type reactions and Michael transformations (Scheme 50) [134-142]. [Pg.372]

In addition to the presented Sjj/Michael transformations, a twofold domino Sn/Sn cycloalkylation of stabilized carbanions from cyclic P-ketoesters with 1,4-dibromobut-2-yne yielding annulated 2-vinyHdenehydrofurans has been reported... [Pg.109]

Chiral organocatalysts were to the fore in Michael transformations prolines, thioureas, NHCs, BINAPs, and diamines, or combinations thereof. [Pg.33]

Carbocations were discovered over 100 years ago and have been investigated in diverse ways both spectroscopically and computationally [86-88]. Although as cations they can possess strong Lewis acidic character, carbocations remain seldom represented in organocatalysis, unlike the analogous of silyl salts, for example, discussed above. The first catalytic application of a carbenium salt, the trityl perchlorate 35 (Figure 16.7), was reported for Mukaiyama aldol-type reactions and Michael transformations (Scheme 16.29) [89-97]. [Pg.448]

The target compound is searched for a rctron. A retron is the structural subunit required to be present in the target in order to apply a transform. In Figure 10,3-30 the rctron of a Michael addition is a sequence of five carbon atoms with two carbonyl functions in the 1,5-position. For a Michael addition transform to be applied, it has to be present,... [Pg.570]

Figure 10.3-30. The retrosynthetic point of view the transform of a Michael addition. The structure fragment with a gray background is the retron of the Michael addition transforin. Figure 10.3-30. The retrosynthetic point of view the transform of a Michael addition. The structure fragment with a gray background is the retron of the Michael addition transforin.
Difunctional target molecules are generally easily disconnected in a re/ro-Michael type transform. As an example we have chosen a simple symmetrical molecule, namely 4-(4-methoxyphenyl)-2,6-heptanedione. Only p-anisaldehyde and two acetone equivalents are needed as starting materials. The antithesis scheme given helow is self-explanatory. The aldol condensation product must be synthesized first and then be reacted under controlled conditions with a second enolate (e.g. a silyl enolate plus TiCl4 or a lithium enolate), enamine (M. Pfau, 1979), or best with acetoacetic ester anion as acetone equivalents. [Pg.205]

Addition Reactions. The addition of nucleophiles to quinones is often an acid-catalyzed, Michael-type reductive process (7,43,44). The addition of benzenethiol to 1,4-benzoquinone (2) was studied by A. Michael for a better understanding of valence in organic chemistry (45). The presence of the reduced product thiophenyUiydroquinone (52), the cross-oxidation product 2-thiophenyl-1,4-benzoquinone [18232-03-6] (53), and multiple-addition products such as 2,5-(bis(thiophenyl)-l,4-benzoquinone [17058-53-6] (54) and 2,6-bis(thiophenyl)-l,4-benzoquinone [121194-11-4] (55), is typical ofmany such transformations. [Pg.409]

Nucleophilic Substitution Reactions. Many of the transformations reali2ed through Michael additions to quiaones can also be achieved usiag nucleophilic substitution chemistry. In some iastances the stereoselectivity can be markedly improved ia this fashion (100), eg, ia the reaction of ben2enethiol with esters (R = CH C O) and ethers (R = 3) 1,4-naphthoquiaones. 2-Bromo-5-acetyloxy-l,4-naphthoquiQone [77189-69-6J, R = Br, yields 75% of 2-thiophenyl-5-acetyloxy-l,4-naphthoquinone [71700-93-1], R = SC H. 3-Bromo-5-methoxy-1,4-naphthoquinone [69833-10-9], R = Br, yields 82% of 3-thiophenyl-5-methoxy-l,4-naphthoquinone [112740-62-2] R = SC H. ... [Pg.416]

There are a number of powerful synthetic reactions which join two trigonal carbons to form a CC single bond in a stereocontrolled way under proper reaction conditions. Included in this group are the aldol, Michael, Claisen rearrangement, ene and metalloallyl-carbonyl addition reactions. The corresponding transforms are powerfully stereosimplifying, especially when rendered enantioselective as well as diastereoselective by the use of chiral controller groups. Some examples are listed in Chart 20. [Pg.51]

The category of 2-Gp-keyed transforms which disconnect C-C bonds is among the most important of all transform types. These transforms, especially in their stereoselective versions, are workhorses of retrosynthetic planning as their names alone attest aldol, Michael, Claisen,... [Pg.60]

The heterogeneous catalytic systems have some advantages over homogeneous re Chemical transformations under heterogeneous conditions can occur v/ith better efficiencies, higher purity of products, and easier work-up Balliniandcoworkers have found that commercial amberlyst A-27 is the best choice for the Michael addition of nittoalkanes v/ith fi-subsdnited alkene acceptors fEq 4111 The reacdon is also carried out by potassium carbonate in the presence of Aliquat 336 under idttasonic irradiadon fEq 4 112 ... [Pg.106]

Double Michael addiQoas of rutro compounds beanng tethered acidic carbons to 3-butyn-3-one under NaH catalysis give nitrocyclohexanes v/ith high stereoselectivity The products are transformed into rrruii -fused bicyclic compounds via the Dickmarm reaction on treatment with base fEq 4 139 ... [Pg.114]

Transformers were developed through a series of scientific discoveries in the nineteenth century. Most notably, Michael Faraday showed in 1831 that a variable magnetic field could be used to create a current, thus pioneering the concept of electromagnetic induction. It was not until the 1880s that Nikola Tesla was able to use this principle to bolster his patents for a universal ac distribution network. [Pg.1155]

In this example, the /3-diketone 2-methyJ-l,3-cyclopentanedione is used to generate the enolate ion required for Michael reaction and an aryl-substituted a,/3-unsaturated ketone is used as the acceptor. Base-catalyzed Michael reaction between the two partners yields an intermediate triketone, which then cyclizes in an intramolecular aldol condensation to give a Robinson annulation product. Several further transformations are required to complete the synthesis of estrone. [Pg.899]

A sequence of straightforward functional group interconversions leads from 17 back to compound 20 via 18 and 19. In the synthetic direction, a base-induced intramolecular Michael addition reaction could create a new six-membered ring and two stereogenic centers. The transformation of intermediate 20 to 19 would likely be stereoselective substrate structural features inherent in 20 should control the stereochemical course of the intramolecular Michael addition reaction. Retrosynthetic disassembly of 20 by cleavage of the indicated bond provides precursors 21 and 22. In the forward sense, acylation of the nitrogen atom in 22 with the acid chloride 21 could afford amide 20. [Pg.103]

More recently, Tardella and co-workers reported that treatment of 2-trifluorome-thyl acrylate 36 (Scheme 3.12) with the anion generated from nosyloxycarbamate 37 gave rise to aziridine-2-carboxylate 38 in 96% yield and 72% de with undetermined stereochemistry [40]. Aza-MIRC (Michael-initiated ring closure) was used to account for this transformation. A number of other hydroxylamine derivatives have been employed successfully in this type of aziridination reaction, includ-... [Pg.78]

The Michael addition1, a well known key synthetic transformation, has recently emerged as an important method for stereoselective C — C bond formation2-369"371. Two developments have contributed to a great extent ... [Pg.954]

Thus, like a, /1-unsaturated ketones and sulfones, both thiirene dioxides and thiirene oxides are preferentially attacked by the less basic nucleophiles on the vinylic carbon atom2. This would lead to formally 1,4 Michael-type adducts and/or other products resulting from further transformations following the initial formation of the a-sulfonyl and a-sulfoxy carbanions. [Pg.411]

Base-induced eliminative ring fission, in which both the double bond and the sulfone function take part, has been observed in thiete dioxides253. The reaction can be rationalized in terms of initial Michael-type addition to the double bond of the ring vinyl sulfone, followed by a reverse aldol condensation with ring opening. The isolation of the ether 270c in the treatment of 6c with potassium ethoxide (since the transformation 267 -> 268 is not possible in this case) is in agreement with the reaction mechanism outlined in equation 101253. [Pg.455]


See other pages where Michael transform is mentioned: [Pg.62]    [Pg.72]    [Pg.338]    [Pg.62]    [Pg.290]    [Pg.23]    [Pg.62]    [Pg.72]    [Pg.338]    [Pg.62]    [Pg.290]    [Pg.23]    [Pg.271]    [Pg.46]    [Pg.65]    [Pg.318]    [Pg.40]    [Pg.5]    [Pg.81]    [Pg.10]    [Pg.103]    [Pg.32]    [Pg.119]    [Pg.323]    [Pg.411]   
See also in sourсe #XX -- [ Pg.10 , Pg.60 , Pg.81 , Pg.82 ]

See also in sourсe #XX -- [ Pg.10 , Pg.60 , Pg.81 , Pg.82 ]

See also in sourсe #XX -- [ Pg.10 , Pg.60 , Pg.81 , Pg.82 ]




SEARCH



© 2024 chempedia.info