Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

In complexation titration

The speed and precision with which EDTA is able to donate its spare electron pair to the central metal cation has meant that it has uses not only in chelation therapy and in the commercial areas listed previously, but also in complexation titrations in analytical chemistry. [Pg.85]

BackTitrations. In the performance of aback titration, a known, but excess quantity of EDTA or other chelon is added, the pH is now properly adjusted, and the excess of the chelon is titrated with a suitable standard metal salt solution. Back titration procedures are especially useful when the metal ion to be determined cannot be kept in solution under the titration conditions or where the reaction of the metal ion with the chelon occurs too slowly to permit a direct titration, as in the titration of chromium(III) with EDTA. Back titration procedures sometimes permit a metal ion to be determined by the use of a metal indicator that is blocked by that ion in a direct titration. Eor example, nickel, cobalt, or aluminum form such stable complexes with Eriochrome Black T that the direct titration would fail. However, if an excess of EDTA is added before the indicator, no blocking occurs in the back titration with a magnesium or zinc salt solution. These metal ion titrants are chosen because they form EDTA complexes of relatively low stability, thereby avoiding the possible titration of EDTA bound by the sample metal ion. [Pg.1167]

In a back titration, a slight excess of the metal salt solution must sometimes be added to yield the color of the metal-indicator complex. Where metal ions are easily hydrolyzed, the complexing agent is best added at a suitable, low pH and only when the metal is fully complexed is the pH adjusted upward to the value required for the back titration. In back titrations, solutions of the following metal ions are commonly employed Cu(II), Mg, Mn(II), Pb(II), Th(IV), and Zn. These solutions are usually prepared in the approximate strength desired from their nitrate salts (or the solution of the metal or its oxide or carbonate in nitric acid), and a minimum amount of acid is added to repress hydrolysis of the metal ion. The solutions are then standardized against an EDTA solution (or other chelon solution) of known strength. [Pg.1167]

Masking by oxidation or reduction of a metal ion to a state which does not react with EDTA is occasionally of value. For example, Fe(III) (log K- y 24.23) in acidic media may be reduced to Fe(II) (log K-yyy = 14.33) by ascorbic acid in this state iron does not interfere in the titration of some trivalent and tetravalent ions in strong acidic medium (pH 0 to 2). Similarly, Hg(II) can be reduced to the metal. In favorable conditions, Cr(III) may be oxidized by alkaline peroxide to chromate which does not complex with EDTA. [Pg.1170]

The approach that we have worked out for the titration of a monoprotic weak acid with a strong base can be extended to reactions involving multiprotic acids or bases and mixtures of acids or bases. As the complexity of the titration increases, however, the necessary calculations become more time-consuming. Not surprisingly, a variety of algebraic and computer spreadsheet approaches have been described to aid in constructing titration curves. [Pg.284]

The utility of complexation titrations improved following the introduction by Schwarzenbach, in 1945, of aminocarboxylic acids as multidentate ligands capable of forming stable 1 1 complexes with metal ions. The most widely used of these new ligands was ethylenediaminetetraacetic acid, EDTA, which forms strong 1 1 complexes with many metal ions. The first use of EDTA as a titrant occurred in... [Pg.314]

A second ligand in a complexation titration that initially binds with the analyte but is displaced by the titrant. [Pg.316]

A -visual indicator used to signal the end point in a complexation titration. [Pg.323]

Selection and Standardization of Titrants EDTA is a versatile titrant that can be used for the analysis of virtually all metal ions. Although EDTA is the most commonly employed titrant for complexation titrations involving metal ions, it cannot be used for the direct analysis of anions or neutral ligands. In the latter case, standard solutions of Ag+ or Hg + are used as the titrant. [Pg.327]

An alloy of chromel containing Ni, Fe, and Cr was analyzed by a complexation titration using EDTA as the titrant. A 0.7176-g sample of the alloy was dissolved in ITNOa and diluted to 250 mb in a volumetric flask. A 50.00-mb aliquot of the sample, treated with pyrophosphate to mask the Fe and Cr, required 26.14 mb of 0.05831 M EDTA to reach the murexide end point. A second 50.00-mb aliquot was treated with hexamethylenetetramine to mask the Cr. Titrating with 0.05831 M EDTA required 35.43 mb to reach the murexide end point. Einally, a third 50.00-mb aliquot was treated with 50.00 mb of 0.05831 M EDTA, and back titrated to the murexide end point with 6.21 mb of 0.06316 M Cu +. Report the weight percents of Ni, fe, and Cr in the alloy. [Pg.329]

To evaluate a redox titration we must know the shape of its titration curve. In an acid-base titration or a complexation titration, a titration curve shows the change in concentration of H3O+ (as pH) or M"+ (as pM) as a function of the volume of titrant. For a redox titration, it is convenient to monitor electrochemical potential. [Pg.332]

As with acid-base and complexation titrations, redox titrations are not frequently used in modern analytical laboratories. Nevertheless, several important applications continue to find favor in environmental, pharmaceutical, and industrial laboratories. In this section we review the general application of redox titrimetry. We begin, however, with a brief discussion of selecting and characterizing redox titrants, and methods for controlling the analyte s oxidation state. [Pg.341]

The holistic thermodynamic approach based on material (charge, concentration and electron) balances is a firm and valuable tool for a choice of the best a priori conditions of chemical analyses performed in electrolytic systems. Such an approach has been already presented in a series of papers issued in recent years, see [1-4] and references cited therein. In this communication, the approach will be exemplified with electrolytic systems, with special emphasis put on the complex systems where all particular types (acid-base, redox, complexation and precipitation) of chemical equilibria occur in parallel and/or sequentially. All attainable physicochemical knowledge can be involved in calculations and none simplifying assumptions are needed. All analytical prescriptions can be followed. The approach enables all possible (from thermodynamic viewpoint) reactions to be included and all effects resulting from activation barrier(s) and incomplete set of equilibrium data presumed can be tested. The problems involved are presented on some examples of analytical systems considered lately, concerning potentiometric titrations in complex titrand + titrant systems. All calculations were done with use of iterative computer programs MATLAB and DELPHI. [Pg.28]

To find the best a priori conditions of analysis, the equilibrium analysis, based on material balances and all physicochemical knowledge involved with an electrolytic system, has been done with use of iterative computer programs. The effects resulting from (a) a buffer chosen, (b) its concentration and (c) complexing properties, (d) pH value established were considered in simulated and experimental titrations. Further effects tested were tolerances in (e) volumes of titrants added in aliquots, (f) pre-assumed pH values on precision and accuracy of concentration measured from intersection of two segments obtained in such titrations. [Pg.83]

Pyrocatechol Violet (tetraphenolictriphenylmethanesulfonic acid Na salt) [115-41-3] M 386.4, e 1.4 x 1(H at 445nm in acetate buffer pH 5.2-5.4, pKesi(i)>0 (SO3H), pK ,t(2) 9.4, pKEst(3) 13. It was recrystd from glacial acetic acid. Very hygroscopic. Indicator standard for metal complex titrations. [Mustafin et al. Zh Anal Khim 22 1808 1967.]... [Pg.459]

Complex formation reactions. These depend upon the combination of ions, other than hydrogen or hydroxide ions, to form a soluble, slightly dissociated ion or compound, as in the titration of a solution of a cyanide with silver nitrate... [Pg.258]

The vast majority of complexation titrations are carried out using multidentate ligands such as EDTA or similar substances as the complexone. However, there are other more simple processes which also involve complexation using monodentate or bidentate ligands and which also serve to exemplify the nature of this type of titration. This is demonstrated in the determination outlined in Section 10.44. [Pg.309]

The standard redox potential is 1.14 volts the formal potential is 1.06 volts in 1M hydrochloric acid solution. The colour change, however, occurs at about 1.12 volts, because the colour of the reduced form (deep red) is so much more intense than that of the oxidised form (pale blue). The indicator is of great value in the titration of iron(II) salts and other substances with cerium(IV) sulphate solutions. It is prepared by dissolving 1,10-phenanthroline hydrate (relative molecular mass= 198.1) in the calculated quantity of 0.02M acid-free iron(II) sulphate, and is therefore l,10-phenanthroline-iron(II) complex sulphate (known as ferroin). One drop is usually sufficient in a titration this is equivalent to less than 0.01 mL of 0.05 M oxidising agent, and hence the indicator blank is negligible at this or higher concentrations. [Pg.365]

The great merit of starch is that it is inexpensive. It possesses the following disadvantages (1) insolubility in cold water (2) instability of suspensions in water (3) it gives a water-insoluble complex with iodine, the formation of which precludes the addition of the indicator early in the titration (for this reason, in titrations of iodine, the starch solution should not be added until just prior to the end point when the colour begins to fade) and (4) there is sometimes a drift end point, which is marked when the solutions are dilute. [Pg.387]

For complexation titrations involving the use of EDTA, an indicator electrode can be set up by using a mercury electrode in the presence of mercury (II) EDT A complex (see Section 15.24). [Pg.580]

Discussion. Salicylic acid and iron(III) ions form a deep-coloured complex with a maximum absorption at about 525 nm this complex is used as the basis for the photometric titration of iron(III) ion with standard EDTA solution. At a pH of ca 2.4 the EDTA-iron complex is much more stable (higher stability constant) than the iron-salicylic acid complex. In the titration of an iron-salicylic acid solution with EDTA the iron-salicylic acid colour will therefore gradually disappear as the end point is approached. The spectrophotometric end point at 525 nm is very sharp. [Pg.725]

In a complex-formation reaction the equivalent is most simply deduced by writing down the ionic equation of the reaction. For example, the equivalent of potassium cyanide in the titration with silver ions is 2 moles, since the reaction is ... [Pg.847]


See other pages where In complexation titration is mentioned: [Pg.352]    [Pg.352]    [Pg.1912]    [Pg.1166]    [Pg.314]    [Pg.322]    [Pg.324]    [Pg.331]    [Pg.364]    [Pg.769]    [Pg.770]    [Pg.775]    [Pg.440]    [Pg.200]    [Pg.310]    [Pg.323]    [Pg.337]    [Pg.527]    [Pg.586]    [Pg.627]    [Pg.847]   


SEARCH



Complexation titrations

Titration-complexes

© 2024 chempedia.info