Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Impurities refining

Purification. See also Impurities Refining Wastewater treatment Water purification adsorbents for, 7 612 adsorption processes for, 7 612-613 aminophenols, 2 660-661 benzoic acid, 3 627-628 of carbide-generated acetylene, 7 207-208... [Pg.774]

Aluminium is obtained on a large scale by the electrolysis of the oxide, dissolved in fused cryolite The oxide, occurring naturally as bauxite, AI2O3.2H2O, usually contains silica and iron(III) oxide as impurities. These must be removed first, since aluminium, once prepared, cannot be freed of other metals (which will be deposited on electrolysis) by refining it. The crude oxide is dissolved under pressure in caustic soda solution the aluminium oxide and silica dissolve and the ironflll) oxide is left ... [Pg.141]

Before this treatment, the cassiterite content of the ore is increased by removing impurities such as clay, by washing and by roasting which drives off oxides of arsenic and sulphur. The crude tin obtained is often contaminated with iron and other metals. It is, therefore, remelted on an inclined hearth the easily fusible tin melts away, leaving behind the less fusible impurities. The molten tin is finally stirred to bring it into intimate contact with air. Any remaining metal impurities are thereby oxidised to form a scum tin dross ) on the surface and this can be skimmed off Very pure tin can be obtained by zone refining. [Pg.167]

The element is a gray-white metalloid. In its pure state, the element is crystalline and brittle, retaining its luster in air at room temperature. It is a very important semiconductor material. Zone-refining techniques have led to production of crystalline germanium for semiconductor use with an impurity of only one part in lOio. [Pg.93]

Germanium tetrachloride refined for use in making optical fibers is usually specified to contain less than 0.5 to 5 ppb of each of eight impurities vanadium, chromium, manganese, iron, cobalt, nickel, copper, and zinc. Limits are sometimes specified for a few other elements. Also of concern are hydrogen-bearing impurities therefore, maximum limits of 5 to 10 ppm are usually placed on HCl, OH, CH2, and CH contents. [Pg.280]

Impurities KroU process sponge Electrowon crystals Refined from KroU Electron beam ingot sponge Iodide bar... [Pg.442]

Many of the impurities are much lower than the values shown in Table 3, but these analytical lower limits are typical and more than sufficient for all but special appHcations. Zirconium content can be from 0.01 to 4.5%, and is typically 0.5—2%, but this is a function of how far the separation process was carried, not a function of the reduction or refining processes. [Pg.442]

Production. Indium is recovered from fumes, dusts, slags, residues, and alloys from zinc or lead—zinc smelting. The source material itself, a reduction bullion, flue dust, or electrolytic slime intermediate, is leached with sulfuric or hydrochloric acid, the solutions are concentrated, if necessary, and cmde indium is recovered as 99+% metal. This impure indium is then refined to 99.99%, 99.999%, 99.9999%, or higher grades by a variety of classical chemical and electrochemical processes. [Pg.80]

Specifications and Standards, Shipping. Commercial iodine has a minimum purity of 99.8%. The Committee of Analytical reagents of the American Chemical Society (67) and the U.S. Pharmacopoeia XXII (68) specify an iodine content not less than 99.8%, a maximum nonvolatile residue of 0.01%, and chlorine—bromine (expressed as chlorine) of 0.005% (ACS) and 0.028% (USP), respectively. In the past these requirements were attained basicaHy only by sublimation, but with processing changes these specifications can be met by direct production of iodine. Previously the impurities of the Chilean product were chiefly water, sulfuric acid, and insoluble materials. Improvements in the production process, and especiaHy in the refining step, aHow the direct obtainment of ACS-type iodine. Also, because of its origin and production process, the Chilean iodine has a chlorine—bromine impurity level of no more than 0.002%. [Pg.364]

Dressing. The impure lead bulhon, produced from any of the smelting processes, is cooled to remove dissolved copper prior to the refining operation. The operation is referred to as copper drossing, and is performed in one or two 250 t cast-iron ketdes. The process consists of skimming off the dross, stirring the lead, and reskimming. [Pg.41]

Pyrometa.llurgica.1 Methods. To prepare blast furnace bulhon for commercial sale, certain standards must be met either by the purity of the ores and concentrates smelted or by a series of refining procedures (r6—r8,r20,r21). These separated impurities have market value and the refining operations serve not only to purify the lead, but also to recover valuable by-products. [Pg.43]

The pyrometaHurgical processes, ie, furnace-kettle refining, are based on (/) the higher oxidation potentials of the impurities such as antimony, arsenic, and tin, ia comparison to that of lead and (2) the formation of iasoluble iatermetaUic compounds by reaction of metallic reagents such as 2iac with the impurities, gold, silver and copper, and calcium and magnesium with bismuth (Fig. 12). [Pg.43]

Electrolytic Eefming. Electrolytic refining (26,27), used by Cominco Ltd. (Trad, B.C., Canada) and Cerro de Pasco Corp. (La Oroya, Pern), as weU as by several refineries in Europe and Japan, removes impurities in one step as slimes. The impurities must then be separated and purified. Before the development of the Betterton-KroU process, electrolytic refining was the only practical method of reducing bismuth to the required concentrations. [Pg.47]

The lead—copper phase diagram (1) is shown in Figure 9. Copper is an alloying element as well as an impurity in lead. The lead—copper system has a eutectic point at 0.06% copper and 326°C. In lead refining, the copper content can thus be reduced to about 0.08% merely by cooling. Further refining requites chemical treatment. The solubiUty of copper in lead decreases to about 0.005% at 0°C. [Pg.60]

Lithium is used in metallurgical operations for degassing and impurity removal (see Metallurgy). In copper (qv) refining, lithium metal reacts with hydrogen to form lithium hydride which subsequendy reacts, along with further lithium metal, with cuprous oxide to form copper and lithium hydroxide and lithium oxide. The lithium salts are then removed from the surface of the molten copper. [Pg.224]

Impurities in cmde metal can occur as other metals or nonmetals, either dissolved or in some occluded form. Normally, impurities are detrimental, making the metal less useful and less valuable. Sometimes, as in the case of copper, extremely small impurity concentrations, eg, arsenic, can impart a harmful effect on a given physical property, eg, electrical conductivity. On the other hand, impurities may have commercial value. For example, gold, silver, platinum, and palladium, associated with copper, each has value. In the latter situation, the purity of the metal is usually improved by some refining technique, thereby achieving some value-added and by-product credit. [Pg.159]

Refined metals, as traded on the open market, vary considerably in composition. However, there are strict specifications for certain impurity elements for a number of metals. The degree of purity of common industrial metals obtained from modem metallurgical practices is shown in Table 2 (3). [Pg.159]

Refining Processes. AH the reduction processes yield an impure metal containing some of the minor elements present in the concentrate, eg, cadmium in 2inc, or some elements introduced during the smelting process, eg, carbon in pig iron. These impurities must be removed from the cmde metal in order to meet specifications for use. Refining operations may be classified according to the kind of phases involved in the process, ie, separation of a vapor from a Hquid or soHd, separation of a soHd from a Hquid, or transfer between two Hquid phases. In addition, they may be characterized by whether or not they involve oxidation—reduction reactions. [Pg.169]


See other pages where Impurities refining is mentioned: [Pg.557]    [Pg.600]    [Pg.557]    [Pg.600]    [Pg.14]    [Pg.342]    [Pg.361]    [Pg.434]    [Pg.166]    [Pg.392]    [Pg.129]    [Pg.78]    [Pg.360]    [Pg.244]    [Pg.524]    [Pg.175]    [Pg.421]    [Pg.355]    [Pg.279]    [Pg.279]    [Pg.279]    [Pg.279]    [Pg.347]    [Pg.348]    [Pg.385]    [Pg.442]    [Pg.515]    [Pg.297]    [Pg.493]    [Pg.36]    [Pg.177]    [Pg.321]    [Pg.368]    [Pg.457]    [Pg.496]   
See also in sourсe #XX -- [ Pg.428 , Pg.436 ]




SEARCH



Refining major impurities removed

© 2024 chempedia.info