Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Impedance-measurement parameters

The determined eddy-eurrent parameter is the inductance of the eomplex impedance measured by impedance analyzer at j=100 kHz. Therefore the impulse response function from chapter 4.2.1. is used for calculation. The depth of the cracks is big in comparison to coil size. For presentation the measured and pre-calculated data are related to their maxima (in air). The path X is related to the winding diameter dy of the coil. [Pg.372]

The combination of photocurrent measurements with photoinduced microwave conductivity measurements yields, as we have seen [Eqs. (11), (12), and (13)], the interfacial rate constants for minority carrier reactions (kn sr) as well as the surface concentration of photoinduced minority carriers (Aps) (and a series of solid-state parameters of the electrode material). Since light intensity modulation spectroscopy measurements give information on kinetic constants of electrode processes, a combination of this technique with light intensity-modulated microwave measurements should lead to information on kinetic mechanisms, especially very fast ones, which would not be accessible with conventional electrochemical techniques owing to RC restraints. Also, more specific kinetic information may become accessible for example, a distinction between different recombination processes. Potential-modulation MC techniques may, in parallel with potential-modulation electrochemical impedance measurements, provide more detailed information relevant for the interpretation and measurement of interfacial capacitance (see later discus-... [Pg.460]

At present, the microwave electrochemical technique is still in its infancy and only exploits a portion of the experimental research possibilities that are provided by microwave technology. Much experience still has to be gained with the improvement of experimental cells for microwave studies and in the adjustment of the parameters that determine the sensitivity and reliability of microwave measurements. Many research possibilities are still unexplored, especially in the field of transient PMC measurements at semiconductor electrodes and in the application of phase-sensitive microwave conductivity measurements, which may be successfully combined with electrochemical impedance measurements for a more detailed exploration of surface states and representative electrical circuits of semiconductor liquid junctions. [Pg.519]

Transient measnrements (relaxation measurements) are made before transitory processes have ended, hence the current in the system consists of faradaic and non-faradaic components. Such measurements are made to determine the kinetic parameters of fast electrochemical reactions (by measuring the kinetic currents under conditions when the contribution of concentration polarization still is small) and also to determine the properties of electrode surfaces, in particular the EDL capacitance (by measuring the nonfaradaic current). In 1940, A. N. Frumkin, B. V. Ershler, and P. I. Dolin were the first to use a relaxation method for the study of fast kinetics when they used impedance measurements to study the kinetics of the hydrogen discharge on a platinum electrode. [Pg.199]

Another parameter essential for quantitative applications of micropipettes is the internal ohmic resistance, R. It is largely determined by the solution resistance inside the narrow shaft of the pipette, and can be minimized by producing short (patch-type) pipettes. The micropipette resistance has been evaluated from AC impedance measurements. Beattie et al. measured the resistance of micropipettes filled with aqueous KCl solutions (0.01, 0.1, and 1 M) [18b]. The value obtained for a 3.5/am-radius pipette was within the range from 10 to 10 As expected, the tip resistance was inversely proportional to the concentration of KCl in the filling solution. In ref. 18b, the effect of pipette radius on the tip resistance was evaluated using a constant concentration of KCl. The pipette resistance varied inversely with the tip radius. The iR drop was found to be 4.5-8 mV for the pipette radii of 0.6 to 19/rm when 10 mM KCl was used. [Pg.388]

AC Impedance measurements enable the determination of charge transfer resistance and double layer capacitance and other parameters related to coated systems. [Pg.75]

Cases in which Impedance Spectroscopy Becomes Limited. One might say that if one understands an interface well, the results of Z-to measurements can be readily understood. Of course, the interest is in the other direction, in using Z-to plots when one does not understand the interlace. Then the task is to find an interfacial structure and mechanism (and its resulting equivalent circuit) that provides a Z that is consistent in its dependence on to with the experimental results of the impedance measurement. This requires finding reasonable parameters to fit the value of the C s and R s as a function of to for the individual elements in the various equivalent circuits. If the shape of the calculated Z-to plot can only be made to match experiment by using C s and R s that are physically unreasonable, the proposed structure and the equivalent circuit to match it are not acceptable and another must be tried. [Pg.421]

In this book, an explanation of capacitive behaviour in similar and comparable systems is not directly possible with constant-phase elements because such a comparison is only possible if n values are equal, particularly in the study of surfaces covered with polymer coatings where a unification of the envisaged parameters is necessary. The impedances measured match with a relatively large amount of samples, of which the structure can be complex, showing many sources of non-idealities (e.g. variations in thickness of the membrane, pore size and pore density42 7). A good indication if such non-idealities occur can be found in the values of n. If they are not comparable, non-idealities occur. [Pg.56]

Evidently, the adequate description of electrode impedance in the case of the actual contact between the surface-modified semiconductor and electrolyte represents a very complicated problem owing to the appearance of some hardly measured parameters... [Pg.174]

On a RDE, in the absence of a surface layer, the EHD impedance is a function of a single dimensionless frequency, pSc1/3. This means that if the viscosity of the medium directly above the surface of the electrode and the diffusion coefficient of the species of interest are independent of position away from the electrode, then the EHD impedance measured at different rotation frequencies reduces to a common curve when plotted as a function of p. In other words, there is a characteristic dimensionless diffusional relaxation time for the system, pD, strictly (pSc1/3)D, which is independent of the disc rotation frequency. However, if v or D vary with position (for example, as a consequence of the formation of a viscous boundary layer or the presence of a surface film), then, except under particular circumstances described below, reduction of the measured parameters to a common curve is not possible. Under these conditions pD is dependent upon the disc rotation frequency. The variation of the EHD impedance with as a function of p is therefore the diagnostic for... [Pg.427]

The advantage of network analysers is the possibility of impedance measurement near resonance with evaluation of the parameters R, L, C and C0 and test of the equivalent electrical circuit. However frequency response and network analysers are relatively slow with 1-10 s per measurement in typical experiments. A new generation of faster instruments has come to the market like the HP E5100 Network Analyzer with 40 (is per point in the impedance spectrum which allows us to obtain the impedance of the system in less than 10 ms. [Pg.478]

This option allows the user to specify the frequency at which the impedance measurements will terminate. The value must fall in the same range stated for Initial Frequency. For the LIA stations, the limit was set to 5 Hz for the scans ranging from 100 kHz to 0.1 Hz, and the frequencies below 5 Hz were collected using the multisine technique. For the FRA stations, 0.1 Hz was entered. For experiments ranging from 10 kHz to 10 Hz, the multisine technique was not required for either FRA or LIA stations, and this parameter was set to 10 Hz. [Pg.403]

We have discussed in the above sections Faradaic impedance and the correlation between Faradaic impedance and kinetic parameters. In general, one desires to separate the Faradaic impedance from Rel and Cd. Now we will focus on the extraction of Zf and the kinetic parameters from direct impedance measurements. This is based on the transformation between equivalent circuits in series and equivalent circuits in parallel. [Pg.109]

Although EIS offers many advantages for diagnosing fuel cell properties, clear difficulties exist for applying impedance methods and fitting the data to the model to extract the relevant electrochemical parameters. The limitations of the EIS technique derive from the several requirements required to obtain a valid impedance spectrum, because the accuracy of EIS measurement depends not only on the technical precision of the instrumentation but also on the operating procedures. Theoretically, there are three basic requirements for AC impedance measurements linearity, stability, and causality. [Pg.134]

Another commonly measured parameter is the phase angle of the impedance ... [Pg.314]

Impedance measurements are often used to identify physical phenomena that control an electrochemical reaction and to determine the corresponding physical properties. This chapter provides guidelines for the design of experimental cells, for selection of appropriate impedance parameters, and for selection of appropriate instrument controls. [Pg.129]

Remember 8.3 Impedance measurements entail a compromise balance behveen minimizing bias errors, minimizing stochastic errors, and maximizing the information content of the resulting spectrum. The optimal instrument settings and experimental parameters are not universal and must be selected for each system under study. [Pg.133]

The magnitude of the stocheistic errors in impedance measurements depends on the selection of experimental parameters as detailed in Chapter 8. The simulation results described by Carson et a 00,25i,255 particular provide insight into differences between commonly used impedance instrumentation, including methods based on Fourier analysis and on phase-sensitive detection. ... [Pg.413]

All impedance measurements should begin with measurement of a steady-state polarization curve. The steady-state polarization curve is used to guide selection of an appropriate perturbation amplitude and can provide initial hypotheses for model development. The impedance measirrements can then be made at selected points on the polarization curve to explore the potential dependence of reaction rate constants. Impedance measurements can also be performed at different values of state variables such as temperature, rotation speed, and reactant concentration. Impedance scans measured at different points of time can be used to explore temporal changes in system parameters. Some examples include growth of oxide or corrosion-product films, poisoning of catal5dic surfaces, and changes in reactant or product concentration. [Pg.451]

It is often possible to address function more specifically in in vitro assays, where functional parameters are usually very sensitive readouts of adverse effects. For example trans-epithelial electrical resistance (TEER) is a very sensitive marker of epithelial disturbances. TEER measures the barrier function of the entire mono-layer and is utilized to study functional disturbances of many epithelial/endothelial cell types including blood-brain barrier, pulmonary, renal, and gastrointestinal cells. Its sensitivity lies in the fact that only a small proportion of cell death has a very large impact on barrier function. Additionally, cell stress can interfere with the arrangement and population of tight junction proteins [16] thus, TEER can in certain conditions measure functional disturbances in the absence of cell death [13]. Also since TEER can be measured noninvasively, it is nondestructive and can be used to monitor the effects of treatment over days and weeks [13, 17]. For excitable cells, electrical activity has also been proven to be an extremely sensitive parameter of adverse drug reactions and microelectrode arrays have been employed successfully to monitor neurotoxicity in vitro [18]. Also, for contractile cells, such as cardiomyocytes, the use of impedance measurements to measure the effects of compounds on spontaneous contraction has been demonstrated to be a very sensitive functional monitoring parameter in vitro [19, 20], Admittedly, none of the aforementioned techniques are true biomarkers per se however, such measurements illustrate the fact that in vitro techniques allow certain possibilities that are not practically tenable in the whole body. [Pg.462]


See other pages where Impedance-measurement parameters is mentioned: [Pg.294]    [Pg.123]    [Pg.515]    [Pg.438]    [Pg.210]    [Pg.160]    [Pg.101]    [Pg.96]    [Pg.98]    [Pg.805]    [Pg.260]    [Pg.73]    [Pg.137]    [Pg.286]    [Pg.225]    [Pg.132]    [Pg.249]    [Pg.139]    [Pg.59]    [Pg.330]    [Pg.352]    [Pg.295]    [Pg.26]    [Pg.144]    [Pg.363]    [Pg.393]    [Pg.449]    [Pg.805]   


SEARCH



Impedance parameters

Measurement Parameters

Parameter measured

© 2024 chempedia.info