Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

HYDROXYETHYL POLYMER

A hydroxyethylated polymer (0.6 g) was stirred at room temperature with 0.37 ml of chlorodiethylphosphite and 0.33 ml of dimethylaniline in 10 ml of toluene for 20 hr, during which a white precipitate of dimethylaniline hydrochloride appeared. The solution was removed by decantation, and the polymer was washed with 3x20 ml of toluene and 2x30 ml of chloroform (alcohol free) and vacuum dried. Elemental analysis showed that the polymer contained 4.48% P. Reactions with other phosphites and with chlorodiphenylphosphine were carried out similarly. [Pg.23]

Bloor D M, Wan-Yunis W M Z, Wan-Badhi W A, Li Y, Hoizwarth J F and Wyn-Jones E 1995 Equilibrium and kinetio studies assooiated with the binding of sodium dodeoyl sulfate to the polymers poly(propylene oxide) and ethyl-(hydroxyethyl)oellulose Langmuir 3395-400... [Pg.2608]

Functional Group Methacrylate Monomers. Hydroxyethyl methacrylate and dimeth-ylaminoethyl methacrylate produce polymers having the following formulas ... [Pg.1013]

Terephthahc acid (TA) or dimethyl terephthalate [120-61 -6] (DMT) reacts with ethyleae glycol (2G) to form bis(2-hydroxyethyl) terephthalate [959-26-2] (BHET) which is coadeasatioa polymerized to PET with the elimination of 2G. Moltea polymer is extmded through a die (spinneret) forming filaments that are solidified by air cooling. Combinations of stress, strain, and thermal treatments are appHed to the filaments to orient and crystallize the molecular chains. These steps develop the fiber properties required for specific uses. The two general physical forms of PET fibers are continuous filament and cut staple. [Pg.327]

Acetylene is condensed with carbonyl compounds to give a wide variety of products, some of which are the substrates for the preparation of families of derivatives. The most commercially significant reaction is the condensation of acetylene with formaldehyde. The reaction does not proceed well with base catalysis which works well with other carbonyl compounds and it was discovered by Reppe (33) that acetylene under pressure (304 kPa (3 atm), or above) reacts smoothly with formaldehyde at 100°C in the presence of a copper acetyUde complex catalyst. The reaction can be controlled to give either propargyl alcohol or butynediol (see Acetylene-DERIVED chemicals). 2-Butyne-l,4-diol, its hydroxyethyl ethers, and propargyl alcohol are used as corrosion inhibitors. 2,3-Dibromo-2-butene-l,4-diol is used as a flame retardant in polyurethane and other polymer systems (see Bromine compounds Elame retardants). [Pg.393]

Thickeners. Thickeners are added to remover formulas to increase the viscosity which allows the remover to cling to vertical surfaces. Natural and synthetic polymers are used as thickeners. They are generally dispersed and then caused to swell by the addition of a protic solvent or by adjusting the pH of the remover. When the polymer swells, it causes the viscosity of the mixture to increase. Viscosity is controlled by the amount of thickener added. Common thickeners used in organic removers include hydroxypropylmethylceUulose [9004-65-3], hydroxypropylceUulose [9004-64-2], hydroxyethyl cellulose, and poly(acryHc acid) [9003-01-4]. Thickeners used in aqueous removers include acryHc polymers and latex-type polymers. Some thickeners are not stable in very acidic or very basic environments, so careful selection is important. [Pg.550]

Binders. Paper-coating biaders are either polymers derived from aatural sources or syathetic polymers. The largest volume, aaturally derived biader is starch (qv) (99). Starch is provided ia derivatized form or unmodified form pead com starch is used predomiaanfly for the latter. Unmodified starch is solubilized by thermal conversion or enzyme conversion. The most common derivatized products are acetylated [9045-28-7] oxidized, and hydroxyethylated starches. [Pg.22]

Emulsion polymerizations of vinyl acetate in the presence of ethylene oxide- or propylene oxide-based surfactants and protective coUoids also are characterized by the formation of graft copolymers of vinyl acetate on these materials. This was also observed in mixed systems of hydroxyethyl cellulose and nonylphenol ethoxylates. The oxyethylene chain groups supply the specific site of transfer (111). The concentration of insoluble (grafted) polymer decreases with increase in surfactant ratio, and (max) is observed at an ethoxylation degree of 8 (112). [Pg.466]

Properties. HydroxyethjIceUulose [9004-62-0] (HEC), is a nonionic polymer. Low hydroxyethyl substitutions (MS = 0.05-0.5) yield products that are soluble only in aqueous alkali. Higher substitutions (MS > 1.5) produce water-soluble HEC. The bulk of commercial HEC falls into the latter category. Water-soluble HEC is widely used because of its broad compatibiUty with cations and the lack of a solution gel or precipitation point in water up to the boiling point. The MS of commercial HEC varies from about 1.8 to 3.5. The products are soluble in hot and cold water but insoluble in hydrocarbon solvents. HEC swells or becomes pardy to mosdy soluble in select polar solvents, usually those that are miscible with water. [Pg.274]

Polymeric Calcium Phosphate Cements. Aqueous solutions of polymers such as poly(acryHc acid), poly(vinyl alcohol), gelatin, etc, and/or autopolymerizable monomer systems, eg, 2-hydroxyethyl methacrylate, glycerol dimethacrylate, calcium dimethacrylate, etc, have been used as Hquid vehicles (41,42,76) for the self-setting calcium phosphate cement derived from tetracalcium phosphate and dicalcium phosphate [7757-93-9J. [Pg.474]

Even the earliest reports discuss the use of components such as polymer syrups bearing carboxylic acid functionality as a minor component to improve adhesion [21]. Later, methacrylic acid was specifically added to adhesive compositions to increase the rate of cure [22]. Maleic acid (or dibasic acids capable of cyclic tautomerism) have also been reported to increase both cure rate and bond strength [23]. Maleic acid has also been reported to improve adhesion to polymeric substrates such as Nylon and epoxies [24]. Adducts of 2-hydroxyethyl methacrylate and various anhydrides (such as phthalic) have also been reported as acid-bearing monomers [25]. Organic acids have a specific role in the cure of some blocked organoboranes, as will be discussed later. [Pg.830]

Figure 2 Stability of /3-poly(L-malate) measured by its activity to inhibit purified DNA polymerase a of P. polyceph-alum. The relative degree of inhibition is shown (100 rel. units refer to complete inhibition). The DNA polymerase assay was carried out in the presence of 5 /tg/ml /S-poly(L-malate) as described [4]. The polymer was preincubated for 7 days at 4°C in the following buffer solutions (50 mM) KCl/HCl (—A—). Citrate (—V—). 2-(A/-Morpholino)-ethanesulfonic acid, sodium salt (—O—). Sodium phosphate (— —). N-(2-Hydroxyethyl)piperazine-N -(2-ethanesul-fonic acid), sodium salt (— — ). N,N-b s (2-Hydroxyethyl)-glycine, sodium salt (—T—). Tris/HCl (— —). 3-(Cyclo-hexylamino)-l-propanesulfonic acid, sodium salt (— —). Figure 2 Stability of /3-poly(L-malate) measured by its activity to inhibit purified DNA polymerase a of P. polyceph-alum. The relative degree of inhibition is shown (100 rel. units refer to complete inhibition). The DNA polymerase assay was carried out in the presence of 5 /tg/ml /S-poly(L-malate) as described [4]. The polymer was preincubated for 7 days at 4°C in the following buffer solutions (50 mM) KCl/HCl (—A—). Citrate (—V—). 2-(A/-Morpholino)-ethanesulfonic acid, sodium salt (—O—). Sodium phosphate (— —). N-(2-Hydroxyethyl)piperazine-N -(2-ethanesul-fonic acid), sodium salt (— — ). N,N-b s (2-Hydroxyethyl)-glycine, sodium salt (—T—). Tris/HCl (— —). 3-(Cyclo-hexylamino)-l-propanesulfonic acid, sodium salt (— —).
Hydroxy-containing polymers such as poly(methyl-methacrylate-co-hydroxyethyl methacrylate) [65,66] or secondary cellulose acetate [67,68] were used for this purpose. Vanadium (V) 8-hydroxy quinoline-hydroxy-ethyl methacrylate adduct, prepared by condensation of the latter with a VOQ2OH complex, is polymerized to... [Pg.256]

Dielectric relaxation measurements of polyethylene grafted with acrylic acid(AA), 2-hydroxyethyl methacrylate (HEMA) and their binary mixture were carried out in a trial to explore the molecular dynamics of the grafted samples [125]. Such measurements provide information about their molecular packing and interaction. It was possible to predict that the binary mixture used yields a random copolymer PE—g—P(AA/HEMA), which is greatly enriched with HEMA. This method of characterization is very interesting and is going to be developed in different polymer/monomer systems. [Pg.512]

The described bioaffinity separations demonstrate that polyacrylamide spacers aid the selective binding of highly complex and delicate biomacromolecules and their associates. Moreover, these solutes remain biologically active after desorption probably due to the high inertness and flexibility of the surrounding polymer chains fixed on the solid support. The unbound parts of serum usually show no loss of the activities of their constituents. Thus we evaluate the surface of inorganic supports coated with chemisorbed iV-hydroxyethyl polyacrylamide and its derivatives as being biocompatible. [Pg.172]

The Postnitrated Polyurethane Polymer of 3-Nitro-3-Aza-1,5-Pentane Diisocyanate and N,Nv Bis (2 Hydroxyethyl) Oxamide. [Pg.336]

The GGM-rich hemicelluloses, isolated from water-impregnated spruce chips by heat-fractionation [218], has been used as pre-polymers after modification with methacrylic functions [439]. Radical polymerization of the modified hemicelullose with 2-hydroxyethyl methacrylate in water yielded elastic, soft, transparent, and easily swollen hydrogels. [Pg.53]

Hoffman and his coworkers have done a lot of work on the apphcation of radiation-induced graft polymerization for medical apphcation. The hydrophilic polymers that have been used for radiation-induced grafting are Al-vinyl pyrohdone (NVP), 2-hydroxyethyl methacrylate (HEMA), acrylamide (AAm), acrylic acid (AAc), glycidyl methacrylate (GMA), ethyleneglycol dimethacrylate (EGDMA), and ethyl methacrylate (EMA) onto sihcone rubber were widely smdied. [Pg.244]

Implants in the rabbit corneas exhibited no observable inflammatory characteristics over a period of 6 weeks. Compared to other previously tested polymers, the inertness of these polyanhydrides rivals that of the biocompatible poly(hydroxyethyl methacrylate) and ethylene-vinyl acetate copolymer. Histological examination of the removed corneas also revealed the absence of inflammatory cells (21)... [Pg.66]

Davis, P. A. Nicolais, L., Ambrosio, L., and Huang, S. J., Synthesis and characterization of semi-interpenetrating polymer networks of poly(2-hydroxyethyl methacrylate) and poly(capro-lactone), Polym. Mater. Sci. Eng., 56, 536-540, 1987. [Pg.116]

Terminal-functionalized polymers such as macromonomers and telechelics are very important as prepolymer for construction of functional materials. Single-step functionalization of polymer terminal was achieved via lipase catalysis. Alcohols could initiate the ring-opening polymerizahon of lactones by lipase catalyst. The lipase CA-catalyzed polymerizahon of DDL in the presence of 2-hydroxyethyl methacrylate gave the methacryl-type polyester macromonomer, in which 2-hydroxyethyl methacrylate acted as initiator to introduce the methacryloyl group quanhtatively at the polymer terminal ( inihator method ).This methodology was expanded to the synthesis of oo-alkenyl- and alkynyl-type macromonomers by using 5-hexen-l-ol and 5-hexyn-l-ol as initiator, respechvely. [Pg.225]


See other pages where HYDROXYETHYL POLYMER is mentioned: [Pg.156]    [Pg.156]    [Pg.321]    [Pg.58]    [Pg.196]    [Pg.43]    [Pg.64]    [Pg.140]    [Pg.5]    [Pg.312]    [Pg.272]    [Pg.276]    [Pg.278]    [Pg.485]    [Pg.149]    [Pg.315]    [Pg.490]    [Pg.231]    [Pg.2064]    [Pg.181]    [Pg.325]    [Pg.710]    [Pg.562]    [Pg.29]    [Pg.23]    [Pg.200]    [Pg.873]    [Pg.542]    [Pg.224]   
See also in sourсe #XX -- [ Pg.22 , Pg.22 , Pg.61 ]




SEARCH



Hydroxyethyl methacrylate polymers

Hydroxyethylation

The Synthesis of Hydrophobe-Modified Hydroxyethyl Cellulose Polymers Using Phase Transfer Catalysis

© 2024 chempedia.info