Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrophilic nonionic surfactant

Such a desorbent may be, for example, a hydrophilic nonionic surfactant, which is among the least expensive on the market and is suitable in calcic environment... [Pg.288]

Heidel [39] prepared polysaccharide-acrylate graft polymeric absorbents using an inverse emulsion process. A combination of a lipophilic and a hydrophilic nonionic surfactant was used as dispersant. The combination of surfactants allowed both the aqueous monomer and the starch to be finely dispersed in the continuous oil phase, without gelatinization of the starch. Higher monomer concentrations in the aqueous phase were also possible, which helped the efficiency of the grafting reaction. Persulfates were used as the initiators. [Pg.40]

Emulsifiers. Removing the remover is just as important as removing the finish. For water rinse removers, a detergent that is compatible with the remover formula must be selected. Many organic solvents used in removers are not water soluble, so emulsifiers are often added (see Emulsions). Anionic types such as alkyl aryl sulfonates or tolyl fatty acid salts are used. In other appHcations, nonionic surfactants are preferred and hydrophilic—lipophilic balance is an important consideration. [Pg.550]

A series of sorbitol-based nonionic surfactants are used ia foods as water-ia-oil emulsifiers and defoamers. They are produced by reaction of fatty acids with sorbitol. During reaction, cycHc dehydration as well as esterification (primary hydroxyl group) occurs so that the hydrophilic portion is not only sorbitol but also its mono- and dianhydride. The product known as sorbitan monostearate [1338-41 -6] for example, is a mixture of partial stearic and palmitic acid esters (sorbitan monopalmitate [26266-57-9]) of sorbitol, 1,5-anhydro-D-glucitol [154-58-8] 1,4-sorbitan [27299-12-3] and isosorbide [652-67-5]. Sorbitan esters, such as the foregoing and also sorbitan monolaurate [1338-39-2] and sorbitan monooleate [1338-43-8], can be further modified by reaction with ethylene oxide to produce ethoxylated sorbitan esters, also nonionic detergents FDA approved for food use. [Pg.480]

In most cases, these active defoaming components are insoluble in the defoamer formulation as weU as in the foaming media, but there are cases which function by the inverted cloud-point mechanism (3). These products are soluble at low temperature and precipitate when the temperature is raised. When precipitated, these defoamer—surfactants function as defoamers when dissolved, they may act as foam stabilizers. Examples of this type are the block polymers of poly(ethylene oxide) and poly(propylene oxide) and other low HLB (hydrophilic—lipophilic balance) nonionic surfactants. [Pg.463]

At low temperature, nonionic surfactants are water-soluble but at high temperatures the surfactant s solubUity in water is extremely smaU. At some intermediate temperature, the hydrophile—Hpophile balance (HLB) temperature (24) or the phase inversion temperature (PIT) (22), a third isotropic Hquid phase (25), appears between the oil and the water (Fig. 11). The emulsification is done at this temperature and the emulsifier is selected in the foUowing manner. Equal amounts of the oil and the aqueous phases with aU the components of the formulation pre-added are mixed with 4% of the emulsifiers to be tested in a series of samples. For the case of an o/w emulsion, the samples are left thermostated at 55°C to separate. The emulsifiers giving separation into three layers are then used for emulsification in order to find which one gives the most stable emulsion. [Pg.201]

Possibility of changing the properties of micellar phases by electrolyte inclusions was shown. Under this condition, in the systems with manifestation of complexes formation between the cationic compound of the electrolyte and the polyoxyethylene chain of the surfactant, increase of the hydrophilic properties of micellar phases was observed. The electrolytes that do not have affinity to the surfactant s molecule practically do not influence the liophily of the nonionic surfactant-rich phases. [Pg.50]

Internal surfactants, i.e., surfactants that are incorporated into the backbone of the polymer, are commonly used in PUD s. These surfactants can be augmented by external surfactants, especially anionic and nonionic surfactants, which are commonly used in emulsion polymerization. Great attention should be paid to the amount and type of surfactant used to stabilize urethane dispersions. Internal or external surfactants for one-component PUD s are usually added at the minimum levels needed to get good stability of the dispersion. Additional amounts beyond this minimum can cause problems with the end use of the PUD adhesive. At best, additional surfactant can cause moisture sensitivity problems with the PUD adhesive, due to the hydrophilic nature of the surfactant. Problems can be caused by excess (or the wrong type of) surfactants in the interphase region of the adhesive, affecting the ability to bond. [Pg.789]

Fluorocarbons with a hydrophilic functional group are very active surfactants [23]. Less than 1% of ionic or nonionic surfactants with perfluoroalkyl groups can reduce the surface tension of water from 72 to 15-20 dyne/cm, compared with 25-35dyne/cm for typical hydrocarbon surfactants [24] Perfluoroether surfactants are about as active as their perfluoroalkyl counterparts of similar chain length [25, 26], but fluorosurfactants with more polar alkyl end groups are considerably less active than their perfluoroalkyl analogues (Table 7)... [Pg.983]

This kind of ester acts as a nonionic surfactant if the alkanol groups contain hydrophilic moieties. If only two molecules of alkanoles are added to the phosphoric acid molecule an acid or secondary dialkyl phosphoric acid ester is formed that are an amphiphilic molecule by itself see Eq. (5). [Pg.555]

On the other hand, in.the case of the nonionic surfactants C-15, NP-15 and 0-15 (the nonionic surfactant/cyclohexane system), mono-dispersed silicalite nanocrystals were obtained as shown in Fig. 1(c), 1(d) and 1(e), respectively. The X-ray diffraction patterns of the samples showed peaks corresponding to pentasile-type zeolite. The average size of the silicalite nanocrystals was approximately 120 nm. These results indicated that the ionicity of the hydrophilic groups in the surfactant molecules played an important role in the formation and crystallization processes of the silicalite nanocrystals. [Pg.187]

Surfactants employed for w/o-ME formation, listed in Table 1, are more lipophilic than those employed in aqueous systems, e.g., for micelles or oil-in-water emulsions, having a hydrophilic-lipophilic balance (HLB) value of around 8-11 [4-40]. The most commonly employed surfactant for w/o-ME formation is Aerosol-OT, or AOT [sodium bis(2-ethylhexyl) sulfosuccinate], containing an anionic sulfonate headgroup and two hydrocarbon tails. Common cationic surfactants, such as cetyl trimethyl ammonium bromide (CTAB) and trioctylmethyl ammonium bromide (TOMAC), have also fulfilled this purpose however, cosurfactants (e.g., fatty alcohols, such as 1-butanol or 1-octanol) must be added for a monophasic w/o-ME (Winsor IV) system to occur. Nonionic and mixed ionic-nonionic surfactant systems have received a great deal of attention recently because they are more biocompatible and they promote less inactivation of biomolecules compared to ionic surfactants. Surfactants with two or more hydrophobic tail groups of different lengths frequently form w/o-MEs more readily than one-tailed surfactants without the requirement of cosurfactant, perhaps because of their wedge-shaped molecular structure [17,41]. [Pg.472]

Particularly useful is the physical classification of surfactants based on the hydrophile-lipophile balance (HLB) system [67,68] established by Griffin [69,70]. More than 50 years ago he introduced an empirical scale of HLB values for a variety of nonionic surfactants. Griffin s original concept defined HLB as the percentage (by weight) of the hydrophile divided by 5 to yield more manageable values ... [Pg.257]

H Schott. Solubility parameter and hydrophilic lipophilic balance of nonionic surfactants. J Pharm Sci... [Pg.285]

Surprisingly, other investigators were unable to confirm the adverse effect of nonionic surfactants of low cloud point in the high-temperature dyeing of polyester, even in the presence of electrolytes [111]. This was probably because of the rather low concentrations used. Adducts containing a C18-C2o hydrophobe and a decaoxyethylene hydrophile, as well... [Pg.383]


See other pages where Hydrophilic nonionic surfactant is mentioned: [Pg.43]    [Pg.581]    [Pg.173]    [Pg.387]    [Pg.10]    [Pg.461]    [Pg.189]    [Pg.241]    [Pg.43]    [Pg.581]    [Pg.173]    [Pg.387]    [Pg.10]    [Pg.461]    [Pg.189]    [Pg.241]    [Pg.2579]    [Pg.449]    [Pg.237]    [Pg.237]    [Pg.245]    [Pg.245]    [Pg.255]    [Pg.130]    [Pg.266]    [Pg.1434]    [Pg.769]    [Pg.770]    [Pg.609]    [Pg.637]    [Pg.643]    [Pg.130]    [Pg.250]    [Pg.256]    [Pg.548]    [Pg.556]    [Pg.315]    [Pg.425]    [Pg.31]    [Pg.180]    [Pg.243]    [Pg.94]   
See also in sourсe #XX -- [ Pg.285 ]




SEARCH



Adsorption of Nonionic Surfactants onto Hydrophilic Surfaces

Hydrophilic-lipophilic balances nonionic surfactants

Hydrophilicity surfactants

Nonionic hydrophiles

Nonionic surfactants

Nonionizing

Surfactants Nonionics

Surfactants hydrophilic

© 2024 chempedia.info