Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroperoxides epoxidation with

Hydroperoxide Process. The hydroperoxide process to propylene oxide involves the basic steps of oxidation of an organic to its hydroperoxide, epoxidation of propylene with the hydroperoxide, purification of the propylene oxide, and conversion of the coproduct alcohol to a useful product for sale. Incorporated into the process are various purification, concentration, and recycle methods to maximize product yields and minimize operating expenses. Commercially, two processes are used. The coproducts are / fZ-butanol, which is converted to methyl tert-huty ether [1634-04-4] (MTBE), and 1-phenyl ethanol, converted to styrene [100-42-5]. The coproducts are produced in a weight ratio of 3—4 1 / fZ-butanol/propylene oxide and 2.4 1 styrene/propylene oxide, respectively. These processes use isobutane (see Hydrocarbons) and ethylbenzene (qv), respectively, to produce the hydroperoxide. Other processes have been proposed based on cyclohexane where aniline is the final coproduct, or on cumene (qv) where a-methyl styrene is the final coproduct. [Pg.138]

Because the epoxidation with Tl(III) is stoichiometric to produce Tl(I), reoxidation is needed. Halcon has patented processes based on such epoxidation to yield ethylene oxide (200—203). The primary benefits of such a process are claimed to be high yields of ethylene oxide, fiexibihty to produce either propylene oxide or ethylene oxide, and the potential of a useful by-product (acetaldehyde). Advances usiag organic hydroperoxides ia place of oxygen for reoxidation offer considerable promise, siace reaction rates are rapid and low pressures can be used. [Pg.461]

Liquid-Phase Epoxidation with Hydroperoxides. Molybdenum, vanadium, and tungsten have been proposed as Hquid-phase catalysts for the oxidation of the ethylene by hydroperoxides to ethylene oxide (205). tert- uty hydroperoxide is the preferred oxidant. The process is similar to the arsenic-catalyzed route, and iacludes the use of organometaUic complexes. [Pg.461]

Electron deficient carbon-carbon double bonds are resistant to attack by the electrophilic reagents of Section 5.05.4.2.2(t), and are usually converted to oxiranes by nucleophilic oxidants. The most widely used of these is the hydroperoxide ion (Scheme 79). Since epoxidation by hydroperoxide ion proceeds through an intermediate ct-carbonyl anion, the reaction of acyclic alkenes is not necessarily stereospecific (Scheme 80) (unlike the case of epoxidation with electrophilic agents (Section 5.05.4.2.2(f)) the stereochemical aspects of this and other epoxidations are reviewed at length in (B-73MI50500)). [Pg.117]

The second important process for propylene oxide is epoxidation with peroxides. Many hydroperoxides have been used as oxygen carriers for this reaction. Examples are t-butylhydroperoxide, ethylbenzene hydroperoxide, and peracetic acid. An important advantage of the process is that the coproducts from epoxidation have appreciable economic values. [Pg.222]

The scope of metal-mediated asymmetric epoxidation of allylic alcohols was remarkably enhanced by a new titanium system introduced by Katsuki and Sharpless epoxidation of allylic alcohols using a titanium(IV) isopropoxide, dialkyl tartrate (DAT), and TBHP (TBHP = tert-butyl-hydroperoxide) proceeds with high enantioselectivity and good chemical yield, regardless of... [Pg.208]

All schemes presented are similar and conventional to a great extent. It is characteristic that the epoxidation catalysis also results in the heterolytic decomposition of hydroperoxides (see Section 10.1.4) during which heterolysis of the O—O bond also occurs. Thus, there are no serious doubts that it occurs in the internal coordination sphere of the metal catalyst. However, its specific mechanism and the structure of the unstable catalyst complexes that formed are unclear. The activation energy of epoxidation is lower than that of the catalytic decomposition of hydroperoxides therefore, the yield of oxide per consumed hydroperoxide decreases with the increase in temperature. [Pg.418]

We emphasize that the above mechanism is strictly valid only for H202 and alkyl hydroperoxide epoxidations of alkenes catalyzed by TS-1 and Ti-MCM-41. In view of the observation of similar titanium oxo species when H2 + 02 are brought in contact with TS-1 or Ti-MCM-41 (54), similar conclusions may be drawn for that system as well. A radical mechanism involving the Ti=0 groups had been proposed earlier by Khouw et al. (221) for the hydroxylation of alkanes. No spectroscopic investigation of the TS-l/H202/alkane has yet been reported. [Pg.162]

The method is applicable to a wide range of substrates. Table 4.4 gives various a, (3-enones that can be epoxidized with the La-(R)-BINOL-Ph3PO/ROOH system. The substituents (R1 and R2) can be either aryl or alkyl. Cumene hydroperoxide can be a superior oxidant for the substrates with R2 = aryl group whereas t-butyl hydroperoxide (TBHP) gives a better result for the substrates with R1 = R2 = alkyl group. [Pg.67]

Hydronium ion, 14 23 Hydroperoxidates, 18 411 Hydroperoxide process, for propylene oxide manufacture, 20 798, 801-806 Hydroperoxides, 14 281, 290-291 18 427-436 alkylation of, 18 445 a-oxygen-substituted, 18 448-460 chemical properties of, 18 430 433 decomposition of, 14 279 18 431-432 liquid-phase epoxidation with, 10 656 physical properties of, 18 427-430 preparation by autoxidation, 18 434 synthesis of, 18 433-435 Hydrophile-lipophile balance system,... [Pg.456]

Figure 14.2. Epoxidation with Lewis acids and hydroperoxides... Figure 14.2. Epoxidation with Lewis acids and hydroperoxides...
When cyclohexene is oxidized with oxygen on a Co-zeolite, the major product is cyclohexenyl hydroperoxide together with minor amounts of 1,2-epoxycyclohexane and 2,3-epoxy-l-cyclohexanol [45]. However a combination of Co-zeolite with V0(acac)2 and Ho(CO)g (6/1/1) increases the conversion strongly and the epoxides dominate in the product mixture. [Pg.232]

The activity of titanium based catalysts for the oxidation of organic compounds is well known. Wulff et al. in 1971 [1] patented for Shell Oil a process for the selective epoxidation of propylene with hydroperoxides like ethylbenzene hydroperoxide (EBH) or tertiary-butyl hydroperoxide (TBH) with the use of a catalyst made of Ti02 deposited on high surface area Si02. A Shell Oil plant for the production of 130,000 tons/y of propylene oxide at Moerdijk, Holland, is based on this technology. [Pg.343]

Next to the base-catalyzed asymmetric epoxidations of electron-deficient olefins with chiral hydroperoxides described above, a few examples of uncatalyzed epoxidations with... [Pg.367]

SCHEME 62. Titanium-catalyzed enantioselective epoxidation with different chiral hydroperoxides... [Pg.402]

Table 17) with two substituents in position C3 the oxygen transfer by the chiral hydroperoxides occurred from the same enantioface of the double bond, while epoxidation of the (ii)-phenyl-substituted substrates 142c,g,i resulted in the formation of the opposite epoxide enantiomer in excess. In 2000 Hamann and coworkers reported a new saturated protected carbohydrate hydroperoxide 69b , which showed high asymmetric induction in the vanadium-catalyzed epoxidation reaction of 3-methyl-2-buten-l-ol. The ee of 90% obtained was a milestone in the field of stereoselective oxygen transfer with optically active hydroperoxides. Unfortunately, the tertiary allylic alcohol 2-methyl-3-buten-2-ol was epoxidized with low enantioselectivity (ee 18%) with the same catalytic system . [Pg.403]


See other pages where Hydroperoxides epoxidation with is mentioned: [Pg.735]    [Pg.190]    [Pg.24]    [Pg.81]    [Pg.82]    [Pg.102]    [Pg.158]    [Pg.528]    [Pg.64]    [Pg.260]    [Pg.300]    [Pg.54]    [Pg.33]    [Pg.104]    [Pg.313]    [Pg.366]    [Pg.389]    [Pg.404]    [Pg.405]    [Pg.406]    [Pg.416]    [Pg.417]    [Pg.423]    [Pg.428]    [Pg.432]    [Pg.442]    [Pg.1086]    [Pg.11]    [Pg.53]    [Pg.313]    [Pg.366]   
See also in sourсe #XX -- [ Pg.455 , Pg.456 , Pg.457 , Pg.525 ]




SEARCH



Epoxidation hydroperoxides

Epoxidation nucleophilic, with hydroperoxide

Epoxidation with alkyl hydroperoxides

Epoxidations with tert-butyl hydroperoxide

Olefins epoxidation with alkyl hydroperoxides

With epoxides

© 2024 chempedia.info