Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allyl alcohols tertiary

The oxidation of higher alkenes in organic solvents proceeds under almost neutral conditions, and hence many functional groups such as ester or lac-tone[26,56-59], sulfonate[60], aldehyde[61-63], acetal[60], MOM ether[64], car-bobenzoxy[65], /-allylic alcohol[66], bromide[67,68], tertiary amine[69], and phenylselenide[70] can be tolerated. Partial hydrolysis of THP ether[71] and silyl ethers under certain conditions was reported. Alcohols are oxidized with Pd(II)[72-74] but the oxidation is slower than the oxidation of terminal alkenes and gives no problem when alcohols are used as solvents[75,76]. [Pg.24]

Substituted allylic alcohols are carbonylated using the o.vidizing system of PdCl2 and CuCU in the presence of HCl and oxygen at room temperature and 1 atm of CO to give the 7-lactone 16 in moderate ylelds[20]. Carbonylation of secondary and tertiary allylic alcohols catalyzed by Pd2(dba)j and dppb affords the 7-lactone 17 by selective attack of CO at the terminal carbon under fairly severe conditionsf21]. [Pg.514]

The AE reaction has been applied to a large number of diverse allylic alcohols. Illustration of the synthetic utility of substrates with a primary alcohol is presented by substitution pattern on the olefin and will follow the format used in previous reviews by Sharpless but with more current examples. Epoxidation of substrates bearing a chiral secondary alcohol is presented in the context of a kinetic resolution or a match versus mismatch with the chiral ligand. Epoxidation of substrates bearing a tertiary alcohol is not presented, as this class of substrate reacts extremely slowly. [Pg.54]

A novel approach was developed very recently by Kita et al. [15]. DKR of allylic alcohols was performed by combining a lipase-catalyzed acylation with a racemization through the formation of allyl vanadate intermediates. Excellent yields and enantioselectivities were obtained. An example is shown in Figure 4.4. A limitation with this approach for the substrates shown in Figure 4.4 is that the allylic alcohol must be equally disubstituted in the allylic position (R = R ) since C—C single bond rotation is required in the tertiary alkoxy intermediate. Alternatively, R or R can be H if the two allylic alcohols formed by migration of the hydroxyl group are enantiomers (e.g. cyclic allylic acetates). [Pg.93]

The reaction gives good yields with primary, secondary, and tertiary alcohols, and with alkyl and aryllithium reagents.Allylic alcohols also couple with certain... [Pg.545]

Trifluoromethanesulfonates of alkyl and allylic alcohols can be prepared by reaction with trifluoromethanesulfonic anhydride in halogenated solvents in the presence of pyridine.3 Since the preparation of sulfonate esters does not disturb the C—O bond, problems of rearrangement or racemization do not arise in the ester formation step. However, sensitive sulfonate esters, such as allylic systems, may be subject to reversible ionization reactions, so appropriate precautions must be taken to ensure structural and stereochemical integrity. Tertiary alkyl sulfonates are neither as easily prepared nor as stable as those from primary and secondary alcohols. Under the standard preparative conditions, tertiary alcohols are likely to be converted to the corresponding alkene. [Pg.216]

Knowledge regarding biosyntheses has induced several biomimetic approaches towards steroids, the first examples being described by van Tamelen [10] and Corey [11]. A more efficient process was developed by Johnson [12] who, to synthesize progesterone 0-10 used an acid-catalyzed polycyclization of the tertiary allylic alcohol 0-7 in the presence of ethylene carbonate, which led to 0-9 via 0-8 (Scheme 0.3). The cyclopentene moiety in 0-9 is then transformed into the cyclohexanone moiety in progesterone (0-10). [Pg.3]

We had two possible routes in which alcohol 72 could be used (Scheme 8.19). Route A would involve rearrangement of tertiary alcohol 72 to enone 76. Deprotonation at C5 and generation of the enolate followed by exposure to an oxaziridine or other oxygen electrophile equivalents might directly afford the hydrated furan C-ring of phomactin A (see 82) via hydroxy enone 81. We had also hoped to make use of a chromium-mediated oxidative rearrangement of tertiary allylic alcohols. Unfortunately, treatment of 72 to PCC produced only unidentified baseline materials, thereby quickly eliminating this route. [Pg.202]

Allyl Alcohols. Secondary cyclic allylic alcohols are reduced with the combination of Et3SiH and ethereal LiC104, even in the presence of a tertiary alcohol (Eq. 35) or ketal function.173 Primary allylic alcohols do not undergo deoxygenation under similar conditions.173... [Pg.24]

Several substituted l-oxaspiro[4.5]dec-6-enes have been prepared by employing a mild amberlyst-15-catalyzed Sn2 oxaspirocyclization. As can be seen below, the tertiary <00TL3411> and secondary <00TL3415> allyl alcohols 89 serve as the n-allyl cation precursors and the other hydroxy groups function as nucleophiles. [Pg.149]

Unlike with sodium borohydride (see Section 11.01.5.2), pyrrolizin-3-one 2 reacts with lithium aluminohydride mainly as an amide. No conjugate addition occurs, and only the reductive lactam cleavage takes place to give stereoselectively the (Z)-allylie alcohol 77. Similarly, benzo-annulated pyrrolizin-3-one 17 gives the corresponding benzylic alcohol 78. The same reactivity was observed with organometallics such as methyllithium which gives exclusively the tertiary (Z)-allylic alcohol 79 (Scheme 7). [Pg.12]

The present procedure is representative of a fairly general method of converting alcohols to chlorides using carbon tetrachloride and a tertiary phosphine. The reaction occurs under mild, essentially neutral conditions and, as illustrated by the present synthesis, may be employed to convert allylic alcohols to the corresponding halide without allylic rearrangement. [Pg.103]

Next, the TMS enol ether of 53c underwent oxidation with MCPBA to trimethylsilyloxy ketone 57. in 86% yield (86% conversion). Addition of methylmagnesium bromide in methylene chloride proceeded in almost quantitative yield (95%) to give tertiary alcohol 58. Dehydration with Burgess reagent [19] and acidic workup provided the allylic alcohol 59a in 63% yield, which was converted... [Pg.405]

Birch reduction-alkylation of 5 with 2-bromoethyl acetate was carried out with complete facial selectivity to give 57. This tetrafunctional intermediate was converted to the bicyclic iodolactone 58 ( > 99% ee) from which the radical cyclization substrate 59 was prepared. The key radical cyclization occurred with complete regio- and facial-selectivity and subsequent stereoselective reduction of the resulting tertiary radical gave 60 with the required trans BC ring fusion.The allylic alcohol rmit of (+)-lycorine was obtained by a photochemical radical decarboxylation, 62 63. [Pg.6]

In most cases the catalytically active metal complex moiety is attached to a polymer carrying tertiary phosphine units. Such phosphinated polymers can be prepared from well-known water soluble polymers such as poly(ethyleneimine), poly(acryhc acid) [90,91] or polyethers [92] (see also Chapter 2). The solubility of these catalysts is often pH-dependent [90,91,93] so they can be separated from the reaction mixture by proper manipulation of the pH. Some polymers, such as the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers, have inverse temperature dependent solubihty in water and retain this property after functionahzation with PPh2 and subsequent complexation with rhodium(I). The effect of temperature was demonstrated in the hydrogenation of aqueous allyl alcohol, which proceeded rapidly at 0 °C but stopped completely at 40 °C at which temperature the catalyst precipitated hydrogenation resumed by coohng the solution to 0 °C [92]. Such smart catalysts may have special value in regulating the rate of strongly exothermic catalytic reactions. [Pg.74]

The sulfone moiety was reductively removed and the TBS ether was cleaved chemoselectively in the presence of a TPS ether to afford a primary alcohol (Scheme 13). The alcohol was transformed into the corresponding bromide that served as alkylating agent for the deprotonated ethyl 2-(di-ethylphosphono)propionate. Bromination and phosphonate alkylation were performed in a one-pot procedure [33]. The TPS protecting group was removed and the alcohol was then oxidized to afford the aldehyde 68 [42]. An intramolecular HWE reaction under Masamune-Roush conditions provided a macrocycle as a mixture of double bond isomers [43]. The ElZ isomers were separated after the reduction of the a, -unsaturated ester to the allylic alcohol 84. Deprotection of the tertiary alcohol and protection of the prima-... [Pg.91]

Berkessel and co-workers have demonstrated the utility of the bifunctional cyclohexane-diamine catalysts in the dynamic kinetic resolution of azalactones (Schemes 60 and 61) [111, 112]. The authors proposed that the urea/thiourea moiety of the catalyst coordinates and activates the electrophilic azlactone. The allyl alcohol nucleophilicity is increased due to the Brpnsted base interaction with the tertiary amine of the catalyst. [Pg.184]

When the reaction of a triethylsilyl-substituted derivative 42 is examined, an allylic alcohol 43 is isolated albeit in low yield. This result suggests that in the presence of a tertiary amine isomerization of the cyclopropanol to an allylic al-... [Pg.81]

We subsequently reported that altering the structure of the aryl groups of the tertiary phosphine can indeed produce a more effective catalyst [10]. Thus, replacement of Ph with o-Tol (PF-PPh2 -> PF-P(o-Tol)2) furnishes a ligand that provides improved enantioselectivity and yield for the rhodium-catalyzed isomerization of F-allylic alcohols (Tab. 4.1). [Pg.82]

On treatment of phosphine with I-butene, cyclohexene, allyl alcohol, allylamine or allyl chloride, the corresponding primary, secondary and tertiary organophosphines are obtained in yields ranging from 2 to 67%. The reaction between phosphine and 1-butene is, among others, used for the industrial preparation of tributylphosphine. ... [Pg.45]

This procedure provides a variety of allyloxyacrylic acids however, it is sensitive to steric hindrance. Tertiary allylic alcohols do not add to the betaine and sterically hindered secondary alcohols add with decreasing facility. Table I indicates the scope of this reaction. [Pg.18]


See other pages where Allyl alcohols tertiary is mentioned: [Pg.830]    [Pg.830]    [Pg.830]    [Pg.830]    [Pg.370]    [Pg.374]    [Pg.92]    [Pg.769]    [Pg.1195]    [Pg.502]    [Pg.527]    [Pg.544]    [Pg.708]    [Pg.1079]    [Pg.330]    [Pg.425]    [Pg.817]    [Pg.116]    [Pg.87]    [Pg.62]    [Pg.110]    [Pg.116]    [Pg.82]    [Pg.697]    [Pg.206]    [Pg.721]    [Pg.195]    [Pg.297]   


SEARCH



Alcohols tertiary allylic

© 2024 chempedia.info