Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen hexacyanoferrate

Hydrochloric acid If a concentrated solution of potassium hexacyano-ferrate(II) is mixed with 1 1 hydrochloric acid, hydrogen hexacyanoferrate(II) is formed, which can be extracted by ether ... [Pg.321]

Hydrogen hexacyanoferrate(II) Hexacyanomanganic(III) acid Hexaquachromium(III) chloride Dihydroxohexacetatotrichromium(III) halide Bis(2,4-pentanedionato )nickel(II)... [Pg.23]

Concentrated hydrochloric acid adding concentrated hydrochloric acid to a saturated solution of potassium hexacyanoferrate(III) in cold, a brown precipitate of free hydrogen hexacyanoferrate(III) (hexacyanoferric acid) is obtained ... [Pg.188]

Copper(II) ions in aqueous solution are readily obtained from any copper-containing material. The reactions with (a) alkali (p. 430), (b) concentrated ammonia (p 413) and (c) hydrogen sulphide (p. 413) provide satisfactory tests for aqueous copper(II) ions. A further test is to add a hexacyanoferrate(II) (usually as the potassium salt) when a chocolate-brown precipitate of copper(II) hexacyanoferrate(II) is obtained ... [Pg.416]

Until now examples for catalytic reactions involving ferrates with iron in the oxidation state of -l-3 are very rare. One example is the hexacyanoferrate 8-catalyzed oxidation of trimethoxybenzenes 7 to dimethoxy-p-benzoquinones 9/10 by means of hydrogen peroxide which was published by Matsumoto and Kobayashi in 1985 [2]. Using hexacyanoferrate 8 product 9 was favored while other catalysts like Fe(acac)3 or Fe2(S04)3 favored product 10 (Scheme 2). The oxidation is supposed to proceed via the corresponding phenols which are formed by the attack of OH radicals generated in the Fe/H202 system. [Pg.182]

Due to the high rate of reaction observed by Meissner and coworkers it is unlikely that the reaction of OH with DMSO is a direct abstraction of a hydrogen atom. Gilbert and colleagues proposed a sequence of four reactions (equations 20-23) to explain the formation of both CH3 and CH3S02 radicals in the reaction of OH radicals with aqueous DMSO. The reaction mechanism started with addition of OH radical to the sulfur atom [they revised the rate constant of Meissner and coworkers to 7 X 10 M s according to a revision in the hexacyanoferrate(II) standard]. The S atom in sulfoxides is known to be at the center of a pyramidal structure with the free electron pair pointing toward one of the corners which provides an easy access for the electrophilic OH radical. [Pg.899]

These possess the dangerous reactions of the CN ion, or cyano group. The hexacyanoferrate (III) anion also has oxidising properties. Finally, it is thought to produce an extremely unstable acid in certain conditions. These salts also produce hydrogen cyanide, which is highly toxic, in an acid medium (see p.334). [Pg.205]

In contrast to a variety of oxidizable compounds, only a few examples for the detection of strong oxidants with transition metal hexacyanoferrates were shown. Among them, hydrogen peroxide is discussed in the following section. Except for H202, the reduction of carbon dioxide [91] and persulfate [92] by Prussian blue-modified electrode was shown. The detection of the latter is important in cosmetics. It should be noted that the reduction of Prussian blue to Prussian white occurs at the lowest redox potential as can be found in transition metal hexacyanoferrates. [Pg.441]

Application of transition metal hexacyanoferrates for development of biosensors was first announced by our group in 1994 [118]. The goal was to substitute platinum as the most commonly used hydrogen peroxide transducer for Prussian blue-modified electrode. The enzyme glucose oxidase was immobilized on the top of the transducer in the polymer (Nation) membrane. The resulting biosensor showed advantageous characteristics of both sensitivity and selectivity in the presence of commonly tested reductants, such as ascorbate and paracetamol. [Pg.449]

Except for Prussian blue activity in hydrogen peroxide, reduction has been shown for a number of transition metal hexacyanoferrates. The latter were cobalt [151], nickel [152], chromium [150], titanium [153], copper [154], manganese [33], and vanadium [28] hexacyanoferrates. However, as was shown in review [117], catalytic activity of the mentioned inorganic materials in H202 reduction is either very low, or is provided by impurities of Prussian blue in the material. Nevertheless, a number of biosensors based on different transition metal hexacyanoferrates have been developed. [Pg.449]

A. Eftekhari, Aluminum electrode modified with manganese hexacyanoferrate as a chemical sensor for hydrogen peroxide. Talanta 55, 395 402 (2001). [Pg.455]

M.S. Lin, T.F. Tseng, and W.C. Shih, Chromium(III) hexacyanoferrate(II)-based chemical sensor for the cathodic determination of hydrogen peroxide. Analyst 123, 159-163 (1998). [Pg.460]

M.S. Lin and B.I. Jan, Determination of hydrogen peroxide by utilizing a cobalt(II)hexacyanoferrate-modified glassy carbon electrode as a chemical sensor. Electroanalysis 9, 340-344 (1997). [Pg.460]

Y. Mishima, J. Motonaka, K. Maruyama, and S. Ikeda, Determination of hydrogen peroxide using a potassium hexacyanoferrate(III) modified titanium dioxide electrode. Anal. Chim. Acta 358, 291-296... [Pg.460]

R. Garjonyte and A. Malinauskas, Operational stability of amperometric hydrogen peroxide sensors, based on ferrous and copper hexacyanoferrates. Sens. Actuators, B B56, 93—97 (1999). [Pg.460]

P.A. Fiorito and S.I.C. de Torresi, Hybrid nickel hexacyanoferrate/polypyrrole composite as mediator for hydrogen peroxide detection and its application in oxidase-based biosensors. J. Electroanal. Chem. 581, 31 (2005). [Pg.461]

Some luminol derivatives have been developed as CL labeling reagents. Analytes prelabeled with luminol derivatives are separated by HPLC, mixed with postcolumn reagents such as hydrogen peroxide and an alkaline solution of potassium hexacyanoferrate (III), and then detected by a CL detector. Highly sensitive determination is possible by optimizing the conditions to increase the CL reaction efficiency for each analyte. [Pg.396]

The structures of luminol derivatives used for HPLC-CL detection are shown in Figure 7A. Analytes labeled with luminol derivatives can be detected using hydrogen peroxide and potassium hexacyanoferrate(III) under alkaline conditions after HPLC separation (Table 1). For example, ibuprofen in saliva [34], saturated... [Pg.404]

Lead(II) azide Lead chromate Lead dioxide Calcium stearate, copper, zinc, brass, carbon disulfide Iron hexacyanoferrate(4-) Aluminum carbide, hydrogen peroxide, hydrogen sulfide, hydroxylamine, ni-troalkanes, nitrogen compounds, nonmetal halides, peroxoformic acid, phosphorus, phosphorus trichloride, potassium, sulfur, sulfur dioxide, sulfides,... [Pg.1478]

Osmium tetraoxide and permanganate are the textbook example reactants for the direct addition of the hydroxyl function to double bonds as shown in Figure 1. Several reagents such as hydrogen peroxide, periodate, hexacyanoferrate(III) or recently also molecular oxygen [2-6] have been used to reoxidize the different metal-oxo compounds. [Pg.254]

H, Cl, Br, NO2, Me, MeO) by bromamine-B, catalysed in the presence of HCl in 30% aqueous methanol by RuCls have been smdied and a biphasic Hammett a-relationship derived. A kinetic study of the ruthenium(in)-catalysed oxidation of aliphatic primary amines by sodium A-bromo-j -toluenesulfonamide (bromamine-T, BAT) in hydrochloric acid medium has been undertaken and the mechanism of the reaction discussed. A concerted hydrogen-atom transfer one-electron transfer mechanism is proposed for the ruthenium(in)-catalysed oxidation of 2-methylpentane-2,4-diol by alkaline hexacyanoferrate(III). The kinetics of the oxidation of propane-... [Pg.226]

Cobalt(ll)-EDTA complex, hydrogen peroxide determination, 628, 639 Cobalt(ll)-hexacyanoferrate, hydrogen peroxide determination, 651 Cobalt(lll)-phthalocyaninetetrasulfonate, hydroperoxide determination, 677 CocrystaUization, alkyl hydroperoxides-ether, 111, 113... [Pg.1451]

Poly(vinylferrocenium perchlorate). Hydroperoxide biosensor, 688 POM (polyoxometaUates), 429-30, 1057 POP (persistent organic pollutants), 747 Poppyseed oil, vibrational spectra, 692 Porphyrin, O NMR spectroscopy, 185 Potassium carbonate, alcohol oxidation, 492 Potassium hexacyanoferrate(II), hydrogen peroxide biosensor, 653 Potassium hydrogen phthalate hemiperhydrate, 98-100... [Pg.1484]


See other pages where Hydrogen hexacyanoferrate is mentioned: [Pg.323]    [Pg.517]    [Pg.656]    [Pg.331]    [Pg.1509]    [Pg.1510]    [Pg.477]    [Pg.323]    [Pg.517]    [Pg.656]    [Pg.331]    [Pg.1509]    [Pg.1510]    [Pg.477]    [Pg.186]    [Pg.899]    [Pg.954]    [Pg.231]    [Pg.119]    [Pg.83]    [Pg.442]    [Pg.453]    [Pg.1104]    [Pg.717]    [Pg.136]   
See also in sourсe #XX -- [ Pg.656 ]

See also in sourсe #XX -- [ Pg.656 ]

See also in sourсe #XX -- [ Pg.1509 ]

See also in sourсe #XX -- [ Pg.477 ]




SEARCH



Cobalt -hexacyanoferrate, hydrogen

Hexacyanoferrate

Potassium hexacyanoferrate , hydrogen

© 2024 chempedia.info