Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen cyanide acidity

Hydrogen cyanide is a weak acid with a dissociation constant of 4.8 x 10 ° (pKa = 9.32) at 25°C. At pH values lower than 7, most of the cyanide is present as hydrogen cyanide acid gas, dissolved in the solution. It evaporates easily from these solutions as a high toxic gas. At pH values higher than 11, cyanide is completely dissociated into its ions and at a pH of 9.32, 50% of the hydrocyanic acid is in the form of free cyanide (CN ). [Pg.254]

It is readily oxidized by air to benzoic acid. With aqueous KOH gives benzyl alcohol and benzoic acid. Gives addition products with hydrogen cyanide and sodium hydrogen sulphite. [Pg.54]

Mandelic acid. This preparation is an example of the synthesis of an a-hydroxy acid by the cyanohydrin method. To avoid the use of the very volatile and extremely poisonous hquid hydrogen cyanide, the cyanohydrin (mandelonitrile) is prepared by treatment of the so um bisulphite addition compound of benzaldehj de (not isolated) with sodium cyanide ... [Pg.754]

Cool the filtrate (A) to 5-10° and add concentrated hydrochloric acid dropwise and with vigorous stirring (FUME CUPBOARD hydrogen cyanide is evolved) to a pH of 1-2 (about 50 ml.) a crude, slightly pink 3-indoleacetic acid is precipitated. The yield of crude acid, m.p. 159-161°, is 20 g. Recrystallise from ethylene dichloride containing a small amount of ethanol 17 -5 g. of pure 3 indoleacetic acid, m.p. 167-168°, are obtained. [Pg.1013]

Nitrogen and sulphur present. Just acidify 2-3 ml. of the fusion solution with dilute nitric acid, and evaporate to half the original volume in order to expel hydrogen cyanide and/or hydrogen sulphide which may be present. Dilute with an equal volume of water. If only one halogen is present, proceed as in tests (i) or (iii). If one or more halogens may be present, use tests (ii), (iii) or (iv). [Pg.1042]

The conversion of primary alcohols and aldehydes into carboxylic acids is generally possible with all strong oxidants. Silver(II) oxide in THF/water is particularly useful as a neutral oxidant (E.J. Corey, 1968 A). The direct conversion of primary alcohols into carboxylic esters is achieved with MnOj in the presence of hydrogen cyanide and alcohols (E.J. Corey, 1968 A,D). The remarkably smooth oxidation of ethers to esters by ruthenium tetroxide has been employed quite often (D.G. Lee, 1973). Dibutyl ether affords butyl butanoate, and tetra-hydrofuran yields butyrolactone almost quantitatively. More complex educts also give acceptable yields (M.E. Wolff, 1963). [Pg.134]

The addition of hydrogen cyanide is catalyzed by cyanide ion but HCN is too weak an acid to provide enough C=N for the reaction to proceed at a reasonable rate Cyanohydrins are therefore normally prepared by adding an acid to a solution containing the carbonyl compound and sodium or potassium cyanide This procedure ensures that free cyanide ion is always present m amounts sufficient to increase the rate of the reaction... [Pg.718]

Cyanogemc glycosides are potentially toxic because they liberate hydrogen cyanide on enzyme catalyzed or acidic hydrolysis Give a mechanistic explanation for this behavior for the specific cases of... [Pg.1066]

Strecker synthesis (Section 27 4) Method for prepanng amino acids in which the first step is reaction of an aldehyde with ammonia and hydrogen cyanide to give an amino nitnle which IS then hydrolyzed... [Pg.1294]

Prussic acid, see Hydrogen cyanide Pyrite, see Iron disulfide Pyrochroite, see Manganese(H) hydroxide Pyrohytpophosphite, see diphosphate(IV)... [Pg.274]

Additions. Halogens, hydrogen haUdes, and hydrogen cyanide readily add to acryUc acid to give the 2,3-dihalopropionate, 3-halopropionate, and 3-cyanopropionate, respectively (21). [Pg.151]

In the early versions, ethylene cyanohydrin was obtained from ethylene chlorohydrin and sodium cyanide. In later versions, ethylene oxide (from the dkect catalytic oxidation of ethylene) reacted with hydrogen cyanide in the presence of a base catalyst to give ethylene cyanohydrin. This was hydrolyzed and converted to acryhc acid and by-product ammonium acid sulfate by treatment with about 85% sulfuric acid. [Pg.155]

In the presence of strongly acidic media, such as triflic acid, hydrogen cyanide or trimethylsilyl cyanide formylates aromatics such as ben2ene. Diprotonotated nittiles were proposed as the active electrophilic species in these reactions (119). [Pg.559]

Other methods of production iaclude hydrolysis of glycolonittile [107-16 ] with an acid (eg, H PO or H2SO2) having a piC of about 1.5—2.5 at temperatures between 100—150°C glycolonittile produced by reaction of formaldehyde with hydrogen cyanide recovery from sugar juices and hydrolysis of monohalogenated acetic acid. None of these has been commercially and economically attractive. [Pg.516]

Hydrogen Cyanide Process. This process, one of two used for the industrial production of malonates, is based on hydrogen cyanide [74-90-8] and chloroacetic acid [79-11-8]. The intermediate cyanoacetic acid [372-09-8] is esterified in the presence of a large excess of mineral acid and alcohol. [Pg.467]

A solution of sodium cyanide [143-33-9] (ca 25%) in water is heated to 65—70°C in a stainless steel reaction vessel. An aqueous solution of sodium chloroacetate [3926-62-3] is then added slowly with stirring. The temperature must not exceed 90°C. Stirring is maintained at this temperature for one hour. Particular care must be taken to ensure that the hydrogen cyanide, which is formed continuously in small amounts, is trapped and neutrali2ed. The solution of sodium cyanoacetate [1071 -36-9] is concentrated by evaporation under vacuum and then transferred to a glass-lined reaction vessel for hydrolysis of the cyano group and esterification. The alcohol and mineral acid (weight ratio 1 2 to 1 3) are introduced in such a manner that the temperature does not rise above 60—80°C. For each mole of ester, ca 1.2 moles of alcohol are added. [Pg.467]

Method 4. Ritter reaction reaction of hydrogen cyanide with an olefin in an acidic medium to produce a primary amine. [Pg.199]

Ritter Reaction (Method 4). A small but important class of amines are manufactured by the Ritter reaction. These are the amines in which the nitrogen atom is adjacent to a tertiary alkyl group. In the Ritter reaction a substituted olefin such as isobutylene reacts with hydrogen cyanide under acidic conditions (12). The resulting formamide is then hydroly2ed to the parent primary amine. Typically sulfuric acid is used in this transformation of an olefin to an amine. Stoichiometric quantities of sulfate salts are produced along with the desired amine. [Pg.200]

Nitriles. Nitriles can be prepared by a number of methods, including ( /) the reaction of alkyl haHdes with alkaH metal cyanides, (2) addition of hydrogen cyanide to a carbon—carbon, carbon—oxygen, or carbon—nitrogen multiple bond, (2) reaction of hydrogen cyanide with a carboxyHc acid over a dehydration catalyst, and (4) ammoxidation of hydrocarbons containing an activated methyl group. For reviews on the preparation of nitriles see references 14 and 15. [Pg.258]

Ammonia is consumed in the manufacture of ammonium phosphates and ammonium sulfate by reaction with phosphoric acid and sulfuric acid, respectively. The phosphates may contain ortho- and polyphosphate values. Ammonium sulfate is also a by-product from other ammonia-using industries such as caprolactam (qv) and hydrogen cyanide (see Cyanides). [Pg.358]

Chemical Synthesis. The first synthesis of ascorbic acid was reported ia 1933 by Reichsteia and co-workers (14,39—42) (Fig. 4). Similar, iadependent reports pubHshed by Haworth and co-workers followed shordy after this work (13,43—45). L-Xylose (16) was converted by way of its osazone (17) iato L-xylosone (18), which reacted with hydrogen cyanide forming L-xylonitfile (19). L-Xylonitfile cyclized under mild conditions to the cycloimine of L-ascorbic acid. Hydrolysis of the cycloimine yielded L-ascorbic acid. The yield for the conversion of L-xylosone to L-ascorbic acid was ca 40%. [Pg.14]

Racemic pantolactone is prepared easily by reacting isobutyraldehyde (15) with formaldehyde ia the presence of a base to yield the iatermediate hydroxyaldehyde (16). Hydrogen cyanide addition affords the hydroxy cyanohydria (17). Acid-cataly2ed hydrolysis and cyclization of the cyanohydria (17) gives (R,3)-pantolactone (18) ia 90% yield (18). [Pg.58]

Enantioselective addition of hydrogen cyanide to hydroxypivaldehyde (25), catalyzed by (lf)-oxynittilase, afforded (R)-cyanohydrin (26) in good optical yield. Acid-catalyzed hydrolysis followed by cyclization resulted in (R)-pantolactone in 98% ee and 95% yield after one recrystallization (56). [Pg.60]

Mild acid converts it to the product and ethanol. With the higher temperatures required of the cyano compound [1003-52-7] (15), the intermediate cycloadduct is converted direcdy to the product by elimination of waste hydrogen cyanide. Often the reactions are mn with neat Hquid reagents having an excess of alkene as solvent. Polar solvents such as sulfolane and /V-m ethyl -pyrrol i don e are claimed to be superior for reactions of the ethoxy compound with butenediol (53). Organic acids, phenols, maleic acid derivatives, and inorganic bases are suggested as catalysts (51,52,54,59,61,62) (Fig. 6). [Pg.70]

Cyanide compounds are classified as either simple or complex. It is usually necessary to decompose complex cyanides by an acid reflux. The cyanide is then distilled into sodium hydroxide to remove compounds that would interfere in analysis. Extreme care should be taken during the distillation as toxic hydrogen cyanide is generated. The cyanide in the alkaline distillate can then be measured potentiometricaHy with an ion-selective electrode. Alternatively, the cyanide can be determined colorimetricaHy. It is converted to cyanogen chloride by reaction with chloramine-T at pH <8. The CNCl then reacts with a pyridine barbituric acid reagent to form a red-blue dye. [Pg.232]


See other pages where Hydrogen cyanide acidity is mentioned: [Pg.121]    [Pg.133]    [Pg.209]    [Pg.210]    [Pg.333]    [Pg.389]    [Pg.324]    [Pg.182]    [Pg.433]    [Pg.701]    [Pg.1041]    [Pg.42]    [Pg.180]    [Pg.513]    [Pg.516]    [Pg.299]    [Pg.251]    [Pg.252]    [Pg.43]    [Pg.274]    [Pg.242]    [Pg.218]    [Pg.261]    [Pg.135]   
See also in sourсe #XX -- [ Pg.33 , Pg.36 , Pg.349 , Pg.777 ]

See also in sourсe #XX -- [ Pg.33 , Pg.36 , Pg.349 , Pg.777 ]

See also in sourсe #XX -- [ Pg.128 ]

See also in sourсe #XX -- [ Pg.33 , Pg.36 , Pg.349 , Pg.777 ]




SEARCH



Acid cyanides

Acidity continued hydrogen cyanide

Addition of hydrogen cyanide to an aldehyde. Mandelic acid from benzaldehyde

Cyanides alkynes: acidic hydrogen

Cyanides hydrogen cyanide

Hydrocyanic Acid—Hydrogen Cyanide

Hydrogen cyanid

Hydrogen cyanide

Hydrogen cyanide, acid dissociation constant

© 2024 chempedia.info