Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbons, hydrocarbon alcohols

Almost insoluble in cold water. Higher alcohols (including benzyl alcohol), higher phenols (e.g., naphthols), metaformaldehyde, paraldehyde, aromatic aldehydes, higher ketones (including acetophenone), aromatic acids, most esters, ethers, oxamide and domatic amides, sulphonamides, aromatic imides, aromatic nitriles, aromatic acid anhydrides, aromatic acid chlorides, sulphonyl chlorides, starch, aromatic amines, anilides, tyrosine, cystine, nitrocompounds, uric acid, halogeno-hydrocarbons, hydrocarbons. [Pg.404]

Cold concentrated sulphuric acid will remove unsaturated hydrocarbons present in saturated hydrocarbons, or alcohols and ethers present in alkyl halides. In the former case soluble sulphonated products are formed, whilst in the latter case alkyl hydrogen sulphates or addition complexes, that are soluble in the concentrated acid, are produced. [Pg.151]

The isopropylidene linkage imparts chemical resistance, the ether linkage imparts temperature resistance, and the sulfone linkage imparts impact strength. The brittleness temperature of polysulfones is — 100°C. Polysulfones are clear, strong, nontoxic, and virtually unbreakable. They do not hydrolyze during autoclaving and are resistant to acids, bases, aqueous solutions, aliphatic hydrocarbons, and alcohols. [Pg.1024]

Chemical Properties. A combination of excellent chemical and mechanical properties at elevated temperatures result in high performance service in the chemical processing industry. Teflon PEA resins have been exposed to a variety of organic and inorganic compounds commonly encountered in chemical service (26). They are not attacked by inorganic acids, bases, halogens, metal salt solutions, organic acids, and anhydrides. Aromatic and ahphatic hydrocarbons, alcohols, aldehydes, ketones, ethers, amines, esters, chlorinated compounds, and other polymer solvents have Httle effect. However, like other perfluorinated polymers,they react with alkah metals and elemental fluorine. [Pg.375]

Autooxidation. Liquid-phase oxidation of hydrocarbons, alcohols, and aldehydes by oxygen produces chemiluminescence in quantum yields of 10 to 10 ° ein/mol (128—130). Although the efficiency is low, the chemiluminescent reaction is important because it provides an easy tool for study of the kinetics and properties of autooxidation reactions including industrially important processes (128,131). The light is derived from combination of peroxyl radicals (132), which are primarily responsible for the propagation and termination of the autooxidation chain reaction. The chemiluminescent termination step for secondary peroxy radicals is as follows ... [Pg.269]

In general, the polymethacrylate esters of the lower alcohols are soluble in aromatic hydrocarbons, esters, ketones, and chlorohydrocarbons. They are insoluble, or only slightly soluble, in aUphatic hydrocarbons and alcohols. The polymethacrylate esters of the higher alcohols (>C ) are soluble in ahphatic hydrocarbons. Cost, toxicity, flammabiUty, volatihty, and chain-transfer activity are the primary considerations in the selection of a suitable solvent. [Pg.265]

Most organic compounds, including aromatic hydrocarbons, alcohols, esters, ketones, ethers, and carboxyUc acids are miscible with nitroparaffins, whereas alkanes and cycloalkanes have limited solubiUty. The lower nitroparaffins are excellent solvents for coating materials, waxes, resins, gums, and dyes. [Pg.98]

Synthetic piae oil is produced by the acid-cataly2ed hydration of mainly a-piaene derived from sulfate turpentine, followed by distillation of the cmde mixture of hydrocarbons and alcohols. The predominant alcohol obtained is a-terpiueol, although under the usual conditions of the reaction, reversible and dehydration reactions lead to multiple hydrocarbon and alcohol components (Fig. 1). [Pg.419]

Important commercial sesquiterpenes mosdy come from essential oils, for example, cedrene and cedrol from cedarwood oil. Many sesquiterpene hydrocarbons and alcohols are important in perfumery as well as being raw materials for synthesis of new fragrance materials. There are probably over 3000 sesquiterpenes that have been isolated and identified in nature. [Pg.426]

The physical properties of vinyl chloride are Hsted in Table 1 (12). Vinyl chloride and water [7732-18-5] are nearly immiscible. The equiUbrium concentration of vinyl chloride at 1 atm partial pressure in water is 0.276 wt % at 25°C, whereas the solubiUty of water in vinyl chloride is 0.0983 wt % at 25°C and saturated pressure (13). Vinyl chloride is soluble in hydrocarbons, oil, alcohol, chlorinated solvents, and most common organic Hquids. [Pg.413]

Carbon disulfide is completely miscible with many hydrocarbons, alcohols, and chlorinated hydrocarbons (9,13). Phosphoms (14) and sulfur are very soluble in carbon disulfide. Sulfur reaches a maximum solubiUty of 63% S at the 60°C atmospheric boiling point of the solution (15). SolubiUty data for carbon disulfide in Hquid sulfur at a CS2 partial pressure of 101 kPa (1 atm) and a phase diagram for the sulfur—carbon disulfide system have been published (16). Vapor—Hquid equiHbrium and freezing point data ate available for several binary mixtures containing carbon disulfide (9). [Pg.27]

Terpin hydrate [2451-01-6] (10), one of the most weU-known expectorants, is isolated from cmde pine rosin left after the distillation of volatile terpene hydrocarbons and alcohols. It is also manufactured from turpentine (a-pinene) by acid-cataly2ed hydration. Terpin hydrate may exist as cis and trans isomers, but only the cis isomer forms a stable, crystalline monohydrate. Terpin hydrate is available in the United States only in prescription products. [Pg.518]

Removal of unsaturated hydrocarbons, of alcohols and of ethers from saturated hydrocarbons or alkyl halides by washing with cold concentrated sulfuric acid. [Pg.6]

Polydiethylene glycol succinate 50-200° Aromatic hydrocarbons, alcohols, ketones, esters. [Pg.39]

The chemical resistance of the linear polymers is also very good. Resistant to most acids, aqueous bases, hydrocarbons, most halogenated hydrocarbons, alcohols and phenols, they are attacked by concentrated sulphuric acid, formic acid, some amines, benzaldehyde, nitromethane and a few other reagents. They will dissolve in 1-chloronaphthalene at elevated temperatures but in general have excellent solvent resistance. The polymer is cross-linked by air oxidation at elevated temperatures. [Pg.594]

Acrylics are chemically resistant at room temperature to dilute acids, except hydrofluoric and hydrocyanic, all alkalis and mineral oils. They are attacked by chlorinated solvents, aromatic hydrocarbons, ketones, alcohols, ethers and esters [60]. [Pg.117]

This has a very high resistance to impact damage, even at subzero temperatures. It has good creep strength in dry conditions up to 115°C but degrades by continuous exposures to water hotter than 65°C. It is resistant to aqueous solutions of acids, aliphatic hydrocarbons, paraffins, alcohols (except methanol), animal and vegetable fats and oils, but is attacked by alkalis, ammonia, aromatic and chlorinated hydrocarbons. [Pg.119]

CFCs have been widely used as cleaning solvents, as they are nonflammable and their toxicity is low. Now, flammable solvents are coming back into favor. A news item from a manufacturer described "a new ozone-friendly cleaning process for the electronics industry, which "uses a unique hydrocarbon-alcohol formulation. It did not remind readers that the mixture is flammable and that they should check that their equipment and procedures are suitable. [Pg.71]

Waxes are water-repelling solids that are part of the protective coatings of a number of living things, including the leaves of plants, the fur of animals, and the feathers of birds. They are usually mixtures of esters in which both the alkyl and acyl group are unbranched and contain a dozen or more carbon atoms. Beeswax, for example, contains the ester triacontyl hexadecanoate as one component of a complex mixture of hydrocarbons, alcohols, and esters. [Pg.1079]

Novel aerobic oxidation method using A-hydroxyphthalimide as a catalyst (transformations of hydrocarbons to alcohols and/or carbonyl compounds) 99YGK24. [Pg.249]

L. Mondello, A. Verzera, P. Previti, F. Crispo and G. Dugo, Multidimensional capillar y GC-GC for the analysis of real complex samples. Part V. Enantiomeric distribution of monoterpene hydrocarbons, monoterpene alcohols and linalyl acetate of bergamot (Citrus bergamia Risso et Poiteau) oils , 7. Agric. Food Chem. 46 4275-4282 (1998). [Pg.246]

The methods of analysis of polymer additives and chemicals, such as hydrocarbons, alcohols, etc., are not only restricted to the field of polymer chemistry but can also be applied for the analysis of such materials in the field of food chemistry. In addition, the analysis of polyaromatic hydrocarbons in edible oils has been of extreme importance. Polymeric packaging materials that are intended for food-contact use may contain certain additives that can migrate into the food products which are actually packaged in such products. The amounts of the additives that are permitted to migrate into food samples are controlled by government agencies in order to show... [Pg.305]

Cyclohexane is a colorless liquid, insoluble in water but soluble in hydrocarbon solvents, alcohol, and acetone. As a cyclic paraffin, it can be easily dehydrogenated to benzene. The dehydrogenation of cyclohexane... [Pg.282]

Urea formaldehyde /alkyd blends Sloving Condensation polymerisation Aromatic hydrocarbons and alcohols Fairly good Fairly good Very good Good Fair Water white Gives white finishes of excellent colour... [Pg.579]

Alcohol derivatives of saturated cyclic hydrocarbons Steroid alcohols (e.g., cholesterol)... [Pg.129]

In the Fischer-Tropsch process, carbon monoxide reacts with hydrogen in the presence of a solid catalyst, with the formation of a mixture of hydrocarbons. The composition of the product varies considerably with the catalyst and the operating conditions. The mixture may include (in addition to hydrocarbons) alcohols, aldehydes, ketones, and acids. [Pg.76]


See other pages where Hydrocarbons, hydrocarbon alcohols is mentioned: [Pg.238]    [Pg.65]    [Pg.38]    [Pg.243]    [Pg.238]    [Pg.65]    [Pg.38]    [Pg.243]    [Pg.1045]    [Pg.1082]    [Pg.139]    [Pg.297]    [Pg.70]    [Pg.71]    [Pg.140]    [Pg.163]    [Pg.565]    [Pg.86]    [Pg.101]    [Pg.270]    [Pg.725]    [Pg.634]    [Pg.1115]    [Pg.169]    [Pg.208]    [Pg.587]    [Pg.99]    [Pg.259]    [Pg.227]   
See also in sourсe #XX -- [ Pg.16 , Pg.17 , Pg.106 , Pg.136 ]




SEARCH



Alcohol A hydrocarbon derivative in which

Alcohol hydrocarbon binaries

Alcohols dehydrogenation, hydrocarbons

Alcohols in Hydrocarbons

Alkyl alcohols hydrocarbon surfactants

Aromatic hydrocarbons alcohols

Aromatic hydrocarbons benzyl alcohol

Aromatic hydrocarbons oximes and alcohols

Aromatic hydrocarbons with alcohols

Ethoxylated alcohols, solid hydrocarbon

Ethoxylated alcohols, solid hydrocarbon surfaces

Hydrocarbon derivatives alcohols

Hydrocarbons alcohols

Hydrocarbons from alcohols

Hydrocarbons, Alcohols, and Esters

Hydrocarbons, hydrocarbon alcohols, tert

Reforming of Hydrocarbons and Alcohols

Sesquiterpenes, alcohols hydrocarbon

Substituted hydrocarbons: alcohols

Substituted hydrocarbons: alcohols ethers, 794 functional groups

Tertiary Alcohols from Hydrocarbons by Ozonation on Silica Gel 1-Adamantanol

© 2024 chempedia.info