Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbons atmospheric distillation unit

Atmospheric and vacuum distillation units (Figures 4.3 and 4.4) are closed processes, and exposures are expected to be minimal. Both atmospheric distillation units and vacuum distillation units produce refinery fuel gas streams containing a mixture of light hydrocarbons, hydrogen sulfide, and ammonia. These streams are processed through gas treatment and sulfur recovery units to recover fuel gas and sulfur. Sulfur recovery creates emissions of ammonia, hydrogen sulfide, sulfur oxides, and nitrogen oxides. [Pg.93]

The atmospheric reduced crude is the feedstock for the vacuum distillation unit. To prevent thermal decomposition (cracking) of the higher boiling point hydrocarbons in the crude oil, the pressure in the vacuum distillation fractionation column is reduced to about one-twentieth of an atmosphere absolute (one atmosphere pressure is 14.7 psia or 760 mm Fig). This effectively reduces the boiling points of the hydrocarbons several hundred degrees Fahrenheit. The components boiling below about 1050°F (565°C) are vaporized and removed as vacuum gas... [Pg.983]

Vacuum distillation increases the amount of the middle distillates and produces luhricating oil base stocks and asphalt. The feed to the unit is the residue from atmospheric distillation. In vacuum distillation, reduced pressures are applied to avoid cracking long-chain hydrocarbons present in the feed. [Pg.51]

In atmospheric or straight-run distillation the crude oil is first pumped into the fractional distillation unit. This is the refinery s tallest unit and some of its columns are used for atmospheric distillation while others are for vacuum distillation. Heated to about 680°F in the gas furnaces, the petroleum reaches the first atmospheric column, which is divided into compartments for fractional distillation. The lighter and more volatile hydrocarbons rise to the upper part. Those that are heavier and less volatile collect in the lower part. While rising, a volatile mass tends to shed its less volatile elements. [Pg.57]

Combustion. The primary reaction carried out in the gas turbine combustion chamber is oxidation of a fuel to release its heat content at constant pressure. Atomized fuel mixed with enough air to form a close-to-stoichiometric mixture is continuously fed into a primary zone. There its heat of formation is released at flame temperatures deterruined by the pressure. The heat content of the fuel is therefore a primary measure of the attainable efficiency of the overall system in terms of fuel consumed per unit of work output. Table 6 fists the net heat content of a number of typical gas turbine fuels. Net rather than gross heat content is a more significant measure because heat of vaporization of the water formed in combustion cannot be recovered in aircraft exhaust. The most desirable gas turbine fuels for use in aircraft, after hydrogen, are hydrocarbons. Fuels that are liquid at normal atmospheric pressure and temperature are the most practical and widely used aircraft fuels kerosene, with a distillation range from 150 to 300 °C, is the best compromise to combine maximum mass —heat content with other desirable properties. For ground turbines, a wide variety of gaseous and heavy fuels are acceptable. [Pg.412]

The atmospheric bottom, also known as reduced oil, is then sent to the vacuum unit where it is further separated into vacuum gas oil and vacuum residues. Vacuum distillation improves the separation of gas oil distillates from the reduced oil at temperatures less than those at which thermal cracking would normally take place. The basic idea on which vacuum distillation operates is that, at low pressure, the boiling points of any material are reduced, allowing various hydrocarbon components in the reduced crude oil to vaporize or boil at a lower temperature. Vacuum distillation of the heavier product avoids thermal cracking and hence product loss and equipment fouling. [Pg.10]

Sharing of past major incidents with other oil and gas industries provides useful input data for similar process industries in order to identify the most critical barriers and improve their safety processes. One poignant example highlights this matter. In 1998 there was an accident in the gas compression stage of a Middle East oil and gas plant which caused 7 dead as a result of fuel accumulation and vapor cloud explosion which was very similar to the Texas City Refinery disaster on March 23, 2005 in which a distillation tower was overfilled and an uncontrolled release of hydrocarbons led to a major explosion and fires. Fifteen people were killed and 180 were injured in the worst disaster in the United States in a decade. In both incidents, excess hydrocarbons were diverted into a pressure relief system that included a blowdown stack. In the Iranian case, it was equipped with a flare, but one which the operator didn t ignite in Texas City the blowdown stack was not equipped with a flare to burn off hydrocarbons as they were released. As a result, the flammable overflow from the tower entered the atmosphere. Ignition of the escaped hydrocarbons was enabled by startup of a nearby vehicle resulted in the explosion and subsequent fires (Hopkins, 2008). This example shows the repetitive patterns of accidents, and root causes of events all over the world in this sector. The lesson of this paper is that accidents in one country, where the scenarios are very similar, can and should serve as lessons to prevent the same scenario being actualized in other countries. [Pg.26]


See other pages where Hydrocarbons atmospheric distillation unit is mentioned: [Pg.983]    [Pg.384]    [Pg.335]    [Pg.213]    [Pg.71]    [Pg.52]    [Pg.340]    [Pg.335]    [Pg.503]    [Pg.213]    [Pg.63]    [Pg.515]    [Pg.34]    [Pg.202]    [Pg.208]    [Pg.1327]    [Pg.657]    [Pg.1256]    [Pg.102]    [Pg.1150]    [Pg.481]    [Pg.520]    [Pg.1536]    [Pg.112]    [Pg.253]    [Pg.637]    [Pg.1533]    [Pg.1331]    [Pg.332]    [Pg.421]    [Pg.1011]    [Pg.412]    [Pg.481]    [Pg.95]    [Pg.90]   
See also in sourсe #XX -- [ Pg.66 ]




SEARCH



Atmosphere hydrocarbons

Distillation atmospheric

Hydrocarbon Distillation

Hydrocarbon units

© 2024 chempedia.info