Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

HPLC-atomic absorption technique

Various CL-based analyses of vitamin B12 are listed in Tables 27.2 and 27.3 for pharmaceutical and food samples. Compared with conventional analytical techniques, such as microbiological assay, high-performance liquid chromatography (HPLC), atomic absorption spectroscopy (AAS), radioisotope isotope assay, and fluorimetric detection, the current proposed CL method was more sensitive with a detection limit of 5 pg/mL. [Pg.484]

Principles and Characteristics Plasma source techniques are more widely used in connection with liquid chromatography than atomic absorption spectrometry (see Section 7.3.3). ICP is a natural complement to liquid chromatography, and HPLC-ICP procedures... [Pg.525]

Atomic techniques such as atomic absorption spectrometry (AA), inductively coupled plasma-optical emission spectrometry (ICP-OES), and inductively coupled plasma-mass spectrometry (ICP-MS), have been widely used in the pharmaceutical industry for metal analysis.190-192 A content uniformity analysis of a calcium salt API tablet formulation by ICP-AES exhibited significantly improved efficiency and fast analysis time (1 min per sample) compared to an HPLC method.193... [Pg.268]

Food-control laboratories seeking to be accredited for the purposes of the Directive should include, as a minimum, the following techniques in generic protocols HPLC, GC, atomic absorption and/or ICP (and microscopy). A further protocol on sample preparation procedures (including digestion and solvent dissolution procedures) should also be developed. Other protocols for generic methods which are acceptable to UKAS may also be developed. Proximate analyses should be addressed as a series of specific methods including moisture, fat, protein and ash determinations. [Pg.84]

For the determination of organotin compounds (tributyltin, triphenyltin, triethyltin, and tetra-ethyltin) a MAE is proposed before the normal phase (NP) HPLC/UV analysis [35], In organotin and arsenic speciation studies, hydride generation is the most popular derivatization method, combined with atomic absorption and fluorescence spectroscopy or ICP techniques [25,36], Both atmospheric pressure chemical ionization (APCI)-MS and electrospray ionization ESI-MS are employed in the determination of butyltin, phenyltin, triphenyltin, and tributyltin in waters and sediments [37], A micro LC/ESI-ion trap MS method has been recently chosen as the official EPA (Environmental Protection Agency) method (8323) [38] it permits the determination of mono-, di-, and tri- butyltin, and mono-, di-, and tri-phenyltin at concentration levels of a subnanogram per liter and has been successfully applied in the analysis of freshwaters and fish [39], Tributyltin in waters has been also quantified through an automated sensitive SPME LC/ESI-MS method [40],... [Pg.539]

Several different techniques have been proposed for vitamin B12 determination, such as microbiological assay, spectrophotometry, chemiluminescence, atomic absorption spectrometry, capillary electrophoresis, and HPLC. [Pg.634]

Dissolution of the sample is the method required in a number of spectroscopic and chromatographic techniques (e.g., UV-Vis spectrophotometry, atomic absorption spectroscopy (AAS), high performance liquid chromatography (HPLC), and thin-layer chromatography (TLC)). Selection of the suitable solvent is essential... [Pg.10]

Numerous analyses in the quality control of most kinds of samples occurring in the flavour industry are done by different chromatographic procedures, for example gas chromatography (GC), high-pressure liquid chromatography (fiPLC) and capillary electrophoresis (CE). Besides the different IR methods mentioned already, further spectroscopic techniques are used, for example nuclear magnetic resonance, ultraviolet spectroscopy, mass spectroscopy (MS) and atomic absorption spectroscopy. In addition, also in quality control modern coupled techniques like GC-MS, GC-Fourier transform IR spectroscopy, HPLC-MS and CE-MS are gaining more and more importance. [Pg.306]

The exploitation of atomic-absorption spectrophotometry for monitoring HPLC column effluents has been recently examined by Funasaka et al. [46]. An eluent-vaporizing system was designed which introduced the effluent into the atomic-absorption unit. The limit of detection of compounds such as ethylmercury chloride was ca. 10 ng compared to 30 jug for a UV detector at 210 nm. The extreme selectivity of atomic absorption could make this technique of great value for the analysis of trace amounts of organometallic compounds and metal chelates. [Pg.104]

The methods of analysis of pollutants in ambient air has developed tremendously in recent years. Although these methods employ the same analytical instrumentation (i.e., GC, GC/MS, HPLC, IR, atomic absorption, ion chromatography, and the electrode methods), the air sampling technique is probably the most important component of such analysis. The use of cryogenic traps and high pressure pumps has supplemented the impinger and sorbent tube sampling techniques. [Pg.21]

HPLC units have been interfaced with a wide range of detection techniques (e.g. spectrophotometry, fluorimetry, refractive index measurement, voltammetry and conductance) but most of them only provide elution rate information. As with other forms of chromatography, for component identification, the retention parameters have to be compared with the behaviour of known chemical species. For organo-metallic species element-specific detectors (such as spectrometers which measure atomic absorption, atomic emission and atomic fluorescence) have proved quite useful. The state-of-the-art HPLC detection system is an inductively coupled plasma/MS unit. HPLC applications (in speciation studies) include determination of metal alkyls and aryls in oils, separation of soluble species of higher molecular weight, and separation of As111, Asv, mono-, di- and trimethyl arsonic acids. There are also procedures for separating mixtures of oxyanions of N, S or P. [Pg.18]

Basic techniques for speciation analysis are typically composed of a succession of analytical steps, e.g. extraction either with organic solvents (e.g. toluene, dichloromethane) or different acids (e.g. acetic or hydrochloric acid), derivatisa-tion procedures (e.g. hydride generation, Grignard reactions), separation (gas chromatography (GC) or high-performance liquid chromatography (HPLC)), and detection by a wide variety of methods, e.g. atomic absorption spectrometry (AAS), mass spectrometry (MS), flame photometric detection (FPD), electron capture detection (ECD), etc. Each of these steps includes specific sources of error which have to be evaluated. [Pg.136]

In contrast to gas chromatographic separations, which require the preparation of volatile derivatives of tin compounds, separations carried out by means of HPLC do not necessarily require preparations of derivatives. HPLC has been used in conjunction with several detection techniques, including photometers, atomic absorption spectrometers and direct current plasma emission spectrometers after hydride generation. Some recent studies have involved fluorimetric detection (Kleibohmer and Cammann, 1989) and hydride generation AAS. The latter has been applied to the quantification of TBT in coastal water. [Pg.430]

Several analytical methods for speciating arsenic have been reported. They include chromatographic techniques such as electrophoresis and ion-exchange (17), paper chromatography (18) and HPLC (19) selective volatilization of arsenic compounds to analogous arsines followed by GC-MES (20) boiling point separation/spectral emission (21) and atomic absorption (22). The above techniques have been applied to samples such as commercial pesticides (20),coal and fly ash (23),rocks, sediments, soils and minerals (24, 22),plant tissue (18), bovine liver (23),and water samples T25). [Pg.713]

Metals. Although metals analysis has traditionally been carried out using atomic absorption spectrophotometry and more recently inductively coupled mass spectrometry, HPLC can be used in certain circumstances by chelation of the appropriate metal. It would be unlikely that HPLC would be a first choice technique unless it helped to determine... [Pg.245]

Radiochemical methods of analysis are considerably more sensitive than other chemical methods. Most spectral methods can quantitate at the parts-per-mil-lion (ppm) level, whereas atomic absorption and some HPLC methods with UV, fluorescence, and electrochemical methods can quantitate at the parts-per-billion (ppb) levels. By controlling the specific activity levels, it is possible to attain quantitation levels lower than ppb levels of elements by radiochemical analyses. Radiochemical analysis, inmost cases, can be done without separation of the analyte. Radionuclides are identified based on the characteristic decay and the energy of the particles as described in detection procedures presented above. Radiochemical methods of analysis include tracer methods, activation analysis, and radioimmunoassay techniques. [Pg.3089]

The organotin compounds R SnX are extracted then converted into the hydrides R SnH4 with NaBH4, or, more usually, are alkylated to R SnR 4 with a Grignard reagent or with NaBEt4. These volatile, relatively non-polar, compounds are then separated by GLC or HPLC and analysed by techniques such as atomic absorption, flame photometry, or mass spectrometry.43 45 At the moment GLC-FP or GLC-MS appear to give the best performance, but of the four steps that are involved in the analysis, namely extraction, derivatisation, separation, and detection, it is not the analysis itself, but rather the extraction and derivatisation that are the major source of errors and are most in need of improvement. [Pg.389]

The detection systems used with HPLC can be broadly divided into three approaches photometry, plasma techniques (ICPAES, ICPMS), and cold vapour atomic absorption and fluorescence spectroscopy (CV-AAS, CV-AFS). The method with the lowest limits of detection (LOD) with sample introduction via a direct injection nebulizer used ICP-MS. An HPLC system coupled to atmospheric pressirre chemical ionization MS was used to identify methyl mercury spiked into a fish tissue CRM (DORM-1, NRCC). This type of system has a significant advantage over elemental detection methods because identification of the species present is based on their structure, rather than matching the analyte s retention time to that of a standard. [Pg.763]

Some of these less used systems have limited applications in specific areas and combine HPLC with, for instance, chemiluminescence techniques [48], viscometry [49], optical activity measurement [50], piezoelectric crystals for mass scanning [51], atomic absorption and emission spectrometry [52-54], photoacoustic monitors [55], nuclear magnetic resonance [56], electron spin resonance [57], Raman [58] and photoconductivity measurement [59]. Details on these and other innovative detection systems are presented in the review by Bruckner [60]. [Pg.309]

Chemical analysis of hazardous substances in air, water, soil, sediment, or solid waste can best be performed by instrumental techniques involving gas chromatography (GC), high-performance liquid chromatography (HPLC), GC/mass spectrometry (MS), Fourier transform infrared spectroscopy (FTIR), and atomic absorption spectrophotometry (AA) (for the metals). GC techniques using a flame ionization detector (FID) or electron-capture detector (BCD) are widely used. Other detectors can be used for specific analyses. However, for unknown substances, identification by GC is extremely difficult. The number of pollutants listed by the U.S. Environmental Protection Agency (EPA) are only in the hundreds — in comparison with the thousands of harmful... [Pg.5]


See other pages where HPLC-atomic absorption technique is mentioned: [Pg.259]    [Pg.481]    [Pg.280]    [Pg.37]    [Pg.280]    [Pg.12]    [Pg.147]    [Pg.228]    [Pg.258]    [Pg.3460]    [Pg.984]    [Pg.117]    [Pg.89]    [Pg.20]    [Pg.51]    [Pg.756]    [Pg.501]    [Pg.1576]    [Pg.857]    [Pg.911]    [Pg.366]    [Pg.396]    [Pg.141]    [Pg.802]    [Pg.389]    [Pg.60]    [Pg.1600]    [Pg.1469]   
See also in sourсe #XX -- [ Pg.309 ]




SEARCH



Absorption techniques

Absorptive technique

Atomic absorption HPLC

© 2024 chempedia.info