Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization homopolymerization

H5C6-CH = CH-F Polymerization Homo polymerization Homopolymerization Polymerization... [Pg.1674]

Homopolymerization Polymerization of BA using an unsymmetrical trilhiocarbonate, 2- [(dodecylsulfanyl) carbonothioyl]sulfanyl) propanoic acid (DoPAT) was chosen as a case study [78]. [Pg.262]

Polymerization takes place, in the following manner in the presence of suitable peroxide catalyst these compounds polymerize with themselves (homopolymerizatiOn) in aqueous emulsion. When the reaction is complete, the emulsified polymer may be used directly or the emulsion coagulated to yield the solid polymer (312). A typical polymerization mixture is total monomer (2-vinylthiazole), 100 sodium stearate, 5 potassium persulfate, 0.3 laurylmercaptan, 0.4 to 0.7 and water, 200 parts. [Pg.397]

We saw in the last chapter that the stationary-state approximation is apphc-able to free-radical homopolymerizations, and the same is true of copolymerizations. Of course, it takes a brief time for the stationary-state radical concentration to be reached, but this period is insignificant compared to the total duration of a polymerization reaction. If the total concentration of radicals is constant, this means that the rate of crossover between the different types of terminal units is also equal, or that R... [Pg.426]

The radical-catalyzed polymerization of furan and maleic anhydride has been reported to yield a 1 1 furan-maleic anhydride copolymer (89,91). The stmcture of the equimolar product, as shown by nmr analyses, is that of an unsaturated alternating copolymer (18) arising through homopolymerization of the intermediate excited donor—acceptor complex (91,92). [Pg.81]

Brominated Styrene. Dibromostyrene [31780-26 ] is used commercially as a flame retardant in ABS (57). Tribromostyrene [61368-34-1] (TBS) has been proposed as a reactive flame retardant for incorporation either during polymerization or during compounding. In the latter case, the TBS could graft onto the host polymer or homopolymerize to form poly(tribromostyrene) in situ (58). [Pg.470]

Copolymerization is effected by suspension or emulsion techniques under such conditions that tetrafluoroethylene, but not ethylene, may homopolymerize. Bulk polymerization is not commercially feasible, because of heat-transfer limitations and explosion hazard of the comonomer mixture. Polymerizations typically take place below 100°C and 5 MPa (50 atm). Initiators include peroxides, redox systems (10), free-radical sources (11), and ionizing radiation (12). [Pg.365]

AlkyUithium compounds are primarily used as initiators for polymerizations of styrenes and dienes (52). These initiators are too reactive for alkyl methacrylates and vinylpyridines. / -ButyUithium [109-72-8] is used commercially to initiate anionic homopolymerization and copolymerization of butadiene, isoprene, and styrene with linear and branched stmctures. Because of the high degree of association (hexameric), -butyIUthium-initiated polymerizations are often effected at elevated temperatures (>50° C) to increase the rate of initiation relative to propagation and thus to obtain polymers with narrower molecular weight distributions (53). Hydrocarbon solutions of this initiator are quite stable at room temperature for extended periods of time the rate of decomposition per month is 0.06% at 20°C (39). [Pg.239]

Propylene oxide and other epoxides undergo homopolymerization to form polyethers. In industry the polymerization is started with multihinctional compounds to give a polyether stmcture having hydroxyl end groups. The hydroxyl end groups are utilized in a polyurethane forming reaction. This article is mainly concerned with propylene oxide (PO) and its various homopolymers that are used in the urethane industry. [Pg.348]

Because of the high ring strain of the four-membered ring, even substituted oxetanes polymerize readily, ia contrast to substituted tetrahydrofurans, which have tittle tendency to undergo ring-opening homopolymerization (5). [Pg.359]

DADC HomopolymeriZation. Bulk polymerization of CR-39 monomer gives clear, colorless, abrasion-resistant polymer castings that offer advantages over glass and acryHc plastics in optical appHcations. Free-radical initiators are required for thermal or photochemical polymerization. [Pg.81]

Addition of dialkyl fumarates to DAP accelerates polymerization maximum rates are obtained for 1 1 molar feeds (41). Methyl aUyl fumarate [74856-71-6] (MAF), CgH QO, homopolymerizes much faster than methyl aUyl maleate [51304-28-0] (MAM) and gelation occurs at low conversion more cyclization occurs with MAM. The greater reactivity of the fumarate double bond is shown in copolymerization of MAF with styrene in bulk. The maximum rate of copolymerization occurs from monomer ratios, almost 1 1 molar, but no maximum is observed from MAM and styrene. Styrene hinders cyclization of both MAF and MAM. [Pg.87]

DiaUyl fumarate polymerizes much more rapidly than diaUyl maleate. Because of its moderate reactivity, DAM is favored as a cross-linking and branching agent with some vinyl-type monomers (1). Cyclization from homopolymerizations in different concentrations in benzene has been investigated (91). DiaUyl itaconate and several other polyfunctional aUyl—vinyl monomers are available. [Pg.87]

The bismaleimide can then be polymerized by reaction with additional amine to form polyaininobismaleknide or by radiation-induced homopolymerization to form polybismaleimide (4). [Pg.248]

Studies of the copolymerization of VDC with methyl acrylate (MA) over a composition range of 0—16 wt % showed that near the intermediate composition (8 wt %), the polymerization rates nearly followed normal solution polymerization kinetics (49). However, at the two extremes (0 and 16 wt % MA), copolymerization showed significant auto acceleration. The observations are important because they show the significant complexities in these copolymerizations. The auto acceleration for the homopolymerization, ie, 0 wt % MA, is probably the result of a surface polymerization phenomenon. On the other hand, the auto acceleration for the 16 wt % MA copolymerization could be the result of Trommsdorff and Norrish-Smith effects. [Pg.430]

Continuous polymerization systems offer the possibiUty of several advantages including better heat transfer and cooling capacity, reduction in downtime, more uniform products, and less raw material handling (59,60). In some continuous emulsion homopolymerization processes, materials are added continuously to a first ketde and partially polymerized, then passed into a second reactor where, with additional initiator, the reaction is concluded. Continuous emulsion copolymerizations of vinyl acetate with ethylene have been described (61—64). Recirculating loop reactors which have high heat-transfer rates have found use for the manufacture of latexes for paint appHcations (59). [Pg.464]

VEs do not readily enter into copolymerization by simple cationic polymerization techniques instead, they can be mixed randomly or in blocks with the aid of living polymerization methods. This is on account of the differences in reactivity, resulting in significant rate differentials. Consequendy, reactivity ratios must be taken into account if random copolymers, instead of mixtures of homopolymers, are to be obtained by standard cationic polymeriza tion (50,51). Table 5 illustrates this situation for butyl vinyl ether (BVE) copolymerized with other VEs. The rate constants of polymerization (kp) can differ by one or two orders of magnitude, resulting in homopolymerization of each monomer or incorporation of the faster monomer, followed by the slower (assuming no chain transfer). [Pg.517]

The effects of increasing the concentration of initiator (i.e., increased conversion, decreased M , and broader PDi) and of reducing the reaction temperature (i.e., decreased conversion, increased M , and narrower PDi) for the polymerizations in ambient-temperature ionic liquids are the same as observed in conventional solvents. May et al. have reported similar results and in addition used NMR to investigate the stereochemistry of the PMMA produced in [BMIM][PFgj. They found that the stereochemistry was almost identical to that for PMMA produced by free radical polymerization in conventional solvents [43]. The homopolymerization and copolymerization of several other monomers were also reported. Similarly to the findings of Noda and Watanabe, the polymer was in many cases not soluble in the ionic liquid and thus phase-separated [43, 44]. [Pg.326]

The trapped radicals, most of which are presumably polymeric species, have been used to initiate graft copolymerization [127,128]. For this purpose, the irradiated polymer is brought into contact with a monomer that can diffuse into the polymer and thus reach the trapped radical sites. This reaction is assumed to lead almost exclusively to graft copolymer and to very little homopolymer since it can be conducted at low temperature, thus minimizing thermal initiation and chain transfer processes. Moreover, low-molecular weight radicals, which would initiate homopolymerization, are not expected to remain trapped at ordinary temperatures. Accordingly, irradiation at low temperatures increases the grafting yield [129]. [Pg.495]

Homopolymerization of macroazoinimers and co-polymerization of macroinimers with a vinyl monomer yield crosslinked polyethyleneglycol or polyethyleneglycol-vinyl polymer-crosslinked block copolymer, respectively. The homopolymers and block copolymers having PEG units with molecular weights of 1000 and 1500 still showed crystallinity of the PEG units in the network structure [48] and the second heating thermograms of polymers having PEG-1000 and PEG-1500 units showed that the recrystallization rates were very fast (Fig. 3). [Pg.730]

Currently, graft post-polymerization of monomers in the gaseous phase (2) is the more widely used process because it has at least two basic advantages. First, side processes of homopolymerization are minimized which reduces the consumption of monomers and makes unnecessary additional treatment of the modified materials with solvents. Second, this method is universal and allows the grafting to the surfaces (such as silica) to be carried out with low radiation yields of active sites as compared to the monomers. [Pg.161]

A more complicated behaviour was obtained with divinyl ether due to the formation of both cyclic structures and pendent vinyl groups in the chain. The failure of such olefins as styrene and isopropenylbenzene to give copolymers with 2-fural-dehyde, and in fact to homopolymerize in its presence, was blamed on the strength of the complex formed between the initiator and the aldehyde, believed too stable to initiate polymerization. [Pg.83]

Methyl-2-furaldehyde gave a similar overall behaviour, but a penultimate effect was observed in its copolymerization with isopropenylbenzene whereby two molecules of the aldehyde could add together if the penultimate unit in the growing chain was from the olefin. This was borne out by the copolymers composition and spectra. The values of the reactivity ratios showed this interesting behaviour rx = 1.0 0.1, r2 = 0.0 0.1. An apparent paradox occurred the aldehyde, which could not homo-polymerize, had equal probability of homo- and copolymerization and the olefin, which homopolymerized readily, could only alternate. The structure arising from this situation was close to a regular sequence of the type ... [Pg.84]

This section describes polymerizations of monomer(s) where the initiating radicals are formed from the monomer(s) by a purely thermal reaction (/.e. no other reagents are involved). The adjectives, thermal, self-initialed and spontaneous, are used interchangeably to describe these polymerizations which have been reported for many monomers and monomer combinations. While homopolymerizations of this class typically require above ambient temperatures, copolymerizations involving certain electron-acceptor-electron-donor monomer pairs can occur at or below ambient temperature. [Pg.106]

Various mechanisms have been proposed to explain the initiation processes. The self-initiated copolymerizations of the monomer pairs S-MMA and S-AN proceed at substantially faster rates than pure S polymerization. For S-AN333 and S-MAHJJ the mechanism of initiation was proposed to be analogous to that of S homopolymerization (Scheme 3.62) but with acrylonitrile acting as the dicnophile in the formation of the Diels-Alder adduct (Scheme 3.66). [Pg.110]


See other pages where Polymerization homopolymerization is mentioned: [Pg.1675]    [Pg.303]    [Pg.1677]    [Pg.351]    [Pg.1675]    [Pg.303]    [Pg.1677]    [Pg.351]    [Pg.451]    [Pg.453]    [Pg.364]    [Pg.369]    [Pg.42]    [Pg.87]    [Pg.464]    [Pg.518]    [Pg.204]    [Pg.327]    [Pg.402]    [Pg.490]    [Pg.530]    [Pg.546]    [Pg.730]    [Pg.828]    [Pg.168]    [Pg.46]    [Pg.62]    [Pg.64]    [Pg.82]    [Pg.204]   
See also in sourсe #XX -- [ Pg.27 , Pg.29 , Pg.32 ]




SEARCH



Homopolymerizations

© 2024 chempedia.info