Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hole catalysis

The concepts of electron-transfer catalysis and so-called hole-catalysis [1] are closely related. It is now generally accepted that many organic reactions that are slow for the neutral reaction system proceed very much more easily in the radical cation. Although hole-catalysis is now well documented experimentally [2], there is surprisingly little mention of the corresponding reductive process, in which a reaction is accelerated by addition of an electron to the reacting system. Although the concept of electron-catalysis is not as well known as hole-catalysis, there are experimental examples of electrocyclic reactions that proceed rapidly in the radical anion, but slowly or not at all in the neutral system [3], For reasons that will be outlined below, we can expect that, in many cases, difficult or forbidden closed-shell reactions will be very much easier if an unpaired electron is introduced into the system by one-electron oxidation or reduction. Thus, if a neutral reaction A - B proceeds slowly or not at all, the radical cation (A" -> B" ) or radical anion (A" B" ) may be facile... [Pg.2]

In order to understand the principles involved in electron-transfer catalysis and also in order to appreciate the historical development of the subject, we must treat hole catalysis and electron transfer between metal atoms and ions and organic substrates before examining catalytic reactions in more detail. This review is intended to cover the basic principles involved in these three areas and to provide a conceptual framework for electron-transfer catalysis. [Pg.3]

Starting materials. Bauld s results rationalize the observed hole-catalysis [54] of Diels-Alder reactions well, but Bally s work suggests that the details of the potential energy surface may change significantly at levels of calculation higher than the UMP2/6-31G //(UHF/3-21G) used by Bauld. [Pg.13]

The concerted mechanism, in which the two new bonds form synchronously (Fig. 7), is probably less common than generally assumed. A concerted non-synchronous mechanism can involve diradicals or zwitterions, which means more or less dissymmetry, geometrical and/or electronic, in the bond formation, which can be increased by the presence of catalysts, such as Lewis acids, especially lithium salts,26 or solvent effects.27 Ionization of one of the reactants (Fig. 8), frequently the dienophile, is efficient in promoting cycloadditions with unreactive reagents, e.g., the [4+2] dimerization of dienes, by a selective transformation to the reactive radical cations ("hole" catalysis). ... [Pg.97]

SemiadditiveMethod. The semiadditive method was developed to reduce copper waste. Thin 5.0 lm (4.5 mg/cm ) copper foil laminates are used, or the whole surface may be plated with a thin layer of electroless copper. Hole forming, catalysis, and electroless copper plating are done as for subtractive circuitry. A strippable reverse—resist coating is then appHed. Copper is electroplated to 35 p.m or more, followed by tin or tin—lead plating to serve as an etch resist. The resist is removed, and the whole board is etched. The original thin copper layer is quickly removed to leave the desired circuit. This method wastes less than 10% of the copper. [Pg.112]

For many serine and cysteine peptidases catalysis first involves formation of a complex known as an acyl intermediate. An essential residue is required to stabilize this intermediate by helping to form the oxyanion hole. In cathepsin B a glutamine performs this role and sometimes a catalytic tetrad (Gin, Cys, His, Asn) is referred too. In chymotrypsin, a glycine is essential for stabilizing the oxyanion hole. [Pg.877]

The mechanism for the lipase-catalyzed reaction of an acid derivative with a nucleophile (alcohol, amine, or thiol) is known as a serine hydrolase mechanism (Scheme 7.2). The active site of the enzyme is constituted by a catalytic triad (serine, aspartic, and histidine residues). The serine residue accepts the acyl group of the ester, leading to an acyl-enzyme activated intermediate. This acyl-enzyme intermediate reacts with the nucleophile, an amine or ammonia in this case, to yield the final amide product and leading to the free biocatalyst, which can enter again into the catalytic cycle. A histidine residue, activated by an aspartate side chain, is responsible for the proton transference necessary for the catalysis. Another important factor is that the oxyanion hole, formed by different residues, is able to stabilize the negatively charged oxygen present in both the transition state and the tetrahedral intermediate. [Pg.172]

The development of the ozone hole over Antarctica is accelerated by heterogeneous catalysis on microciystals of ice. These microcrystals form in abundance in the Antarctic spring, which is when the ozone hole appears. Ice microciystals are less common in the Arctic atmosphere, so ozone depletion has not been as extensive in the Northern Hemisphere. [Pg.1106]

Solid mixed ionic-electronic conductors (MIECs) exhibit both ionic and electronic (electron-hole) conductivity. Naturally, in any material there are in principle nonzero electronic and ionic conductivities (a i, a,). It is customary to limit the use of the term MIEC to those materials in which a, and 0, 1 do not differ by more than two orders of magnitude. It is also customary to use the term MIEC if a, and Ogi are not too low (o, a i 10 S/cm). Obviously, there are no strict rules. There are processes where the minority carriers play an important role despite the fact that 0,70 1 exceeds those limits and a, aj,i< 10 S/cm. In MIECs, ion transport normally occurs via interstitial sites or by hopping into a vacant site or a more complex combination based on interstitial and vacant sites, and electronic (electron/hole) conductivity occurs via delocalized states in the conduction/valence band or via localized states by a thermally assisted hopping mechanism. With respect to their properties, MIECs have found wide applications in solid oxide fuel cells, batteries, smart windows, selective membranes, sensors, catalysis, and so on. [Pg.436]

Zhang Y, Kua J, McCammon JA (2002) Role of the catalytic triad and oxyanion hole in acetylcholinesterase catalysis an ab initio QM/MM study. J Am Chem Soc 124 10572—10577... [Pg.349]

Fig. 14. Schematic of the basic geometry of the aperture system and objective lens pole pieces incorporating radial holes for differential pumping system in the novel atomic resolution-ETEM design of Gai and Boyes (85-90) to probe catalysis at the atomic level. Fig. 14. Schematic of the basic geometry of the aperture system and objective lens pole pieces incorporating radial holes for differential pumping system in the novel atomic resolution-ETEM design of Gai and Boyes (85-90) to probe catalysis at the atomic level.
As shown in Section 2.2.7, chemical reactions may be triggered by electrons or holes from an electrode as illustrated by SrnI substitutions (Section 2.5.6). Instead of involving the electrode directly, the reaction may be induced indirectly by means of redox catalysis, as illustrated in Scheme 2.15 for an SrnI reaction. An example is given in Figure 2.30, in which cyclic voltammetry allows one to follow the succession of events involved in this redox catalysis of an electrocatalytic process. In the absence of substrate (RX) and of nucleophile (Nu-), the redox catalysis, P, gives rise to a reversible response. A typical catalytic transformation of this wave is observed upon addition of RX, as discussed in Sections 2.2.6 and 2.3.1. The direct reduction wave of RX appears at more negative potentials, followed by the reversible wave of RH, which is the reduction product of RX (see Scheme 2.21). Upon addition of the nucleophile, the radical R is transformed into the anion radical of the substituted product, RNu -. RNu -... [Pg.131]

The source of the enormous rate enhancements in enzymatic catalysis has been discussed from physical organic points of view (Jencks, 1969 Bruice, 1970). The kinetic behavior is attributed to factors such as an orientation effect, a microenvironmental effect and multifunctional catalysis. The active sites of enzymes are generally located in a hydrophobic hole or cleft. Therefore, the microenvironmental effect is mainly concerned with the behavior of enzyme catalytic groups in this hydrophobic microenvironment and the specific... [Pg.445]

Clearly, the oxyanion hole is now as significant a feature of the binding site of such acyl transfer abzymes as it is already for esterases and peptidases — and not without good reason. Knossow has analysed the structures of three esterase-like catalytic antibodies, each elicited in response to the same phosphonate TSA hapten (Charbonnier et al., 1997). Catalysis for all three is accounted for by transition state stabilization and in each case there is an... [Pg.263]

Let us now extend the concept of hole or electron catalysis to a redox system consisting of the original reaction and an oxidant or reductant, M. We need not specify the nature of M at this stage. If we simplify the reaction system by suming that there is no direct interaction (i.e. complexation or ion-pairing) between the reaction system, A B, and M, we obtain the simple reaction profiles shown in Fig. 1. [Pg.2]

The bridge effect was scrutinized in the range of diferrocenyl derivatives, especially of those that are applicable in catalysis and material science (Atkinson et al. 2004). One-electron oxidation of these derivatives also proceeds easily, reversibly, and gives rise to cation-radicals (ferrocenium ions). In contrast to the cation-radical of ferrocenylacrylonitrile, the hole transfers through conjugated systems were proven for the bis(ferrocenyl)acetylene cation-radical (Masuda and Shimizu 2006), the bis(ferrocenyl) ethylene cation-radical (Delgado-Pena et al. 1983), and the cation-radical of bis(fulvaleneiron) (LeVanda et al. 1976). These structures are presented in Scheme 1.30. [Pg.36]


See other pages where Hole catalysis is mentioned: [Pg.2]    [Pg.88]    [Pg.1327]    [Pg.185]    [Pg.2]    [Pg.88]    [Pg.1327]    [Pg.185]    [Pg.899]    [Pg.472]    [Pg.129]    [Pg.210]    [Pg.6]    [Pg.281]    [Pg.144]    [Pg.106]    [Pg.317]    [Pg.150]    [Pg.160]    [Pg.35]    [Pg.51]    [Pg.272]    [Pg.129]    [Pg.219]    [Pg.167]    [Pg.264]    [Pg.284]    [Pg.194]    [Pg.75]    [Pg.268]    [Pg.270]    [Pg.277]    [Pg.402]    [Pg.24]    [Pg.5]    [Pg.16]    [Pg.64]   


SEARCH



© 2024 chempedia.info