Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

History of compounding

Nomenclature is the compilation of descriptions of things and technical terms in a special field of knowledge, the vocabulary ofa technical language. In the history of chemistry, a systematic nomenclature became significant only rather late. In the early times of alchemy, the properties of the substance or its appearance played a major role in giving a compound a name. Libavius was the first person who tried to fix some kind of nomenclature in Alckeinia in 1,597. In essence, he gave names to chemical equipment and processes (methods, names that are often still valid in our times. [Pg.18]

The history of iaclusion compounds (1,2) dates back to 1823 when Michael Faraday reported the preparation of the clathrate hydrate of chlorine. Other early observations iaclude the preparation of graphite iatercalates ia 1841, the P-hydroquiaone H2S clathrate ia 1849, the choleic acids ia 1885, the cyclodexthn iaclusion compounds ia 1891, and the Hofmann s clathrate ia 1897. Later milestones of the development of iaclusion compounds refer to the tri-(9-thymotide benzene iaclusion compound ia 1914, pheaol clathrates ia 1935, and urea adducts ia 1940. [Pg.61]

Spectra. The abiHty to consult collections of standard spectra is cmcial in the analysis of unknown compounds. A long history of data collection efforts has been aimed at these appHcations. Among the best known of the pubHshed handbooks are the Sadtkr Spectral Data Sheets which include ir,... [Pg.121]

The Notice of Errors. The first mechanism for correction of errors is called a "Notice of Errors." This document may be filed by the patentee after issuance of the patent with the U.S. PTO and references the patent number, issue date, and the errors contained in the patent. The purpose of a Notice of Errors is to clarify the examination history of the patent and such notice dispositively corrects any misspellings, or typographical errors or omissions. One example of a problem which may be clarified by a Notice of Errors is an omitted chemical bond in a compound used in an exemplary embodiment of the invention. In short, the error is obvious and easily corrected. [Pg.36]

Composites. The history of phenoHc resin composites goes back to the early development of phenoHc materials, when wood flour, minerals, and colorants were combined with phenoHc resins to produce mol ding compounds. In later appHcations, resin varnishes were developed for kraft paper and textile fabrics to make decorative and industrial laminates. Although phenoHcs have been well characterized in glass-reinforced composites, new developments continue in this area, such as new systems for Hquid-injection molding (LIM) and sheet-molding compounds (SMC). More compHcated composite systems are based on aramid and graphite fibers. [Pg.307]

In 1912, however, (201) it was discovered that espundia (American mucocutaneous leishmaniasis) can be cured by tartar emetic. It was soon learned that kala-a2ar (visceral leishmaniasis) and oriental sore (a cutaneous form of the disease occurring in the Middle East) also respond to antimonial therapy, especially when compounds of pentavalent antimony are employed. Treatment of leishmaniasis with the latter type of antimonials is safe and effective in over 90% of the cases (202). In 1918, it was demonstrated that tartar emetic is of value in the treatment of schistosomiasis (203). Pentavalent antimonials proved to be less effective. The introduction of antimony compounds for the treatment of parasitic diseases is undoubtedly one of the important milestones in the history of therapeutics (see Antiparasitic agents). [Pg.211]

The success of quinine inspired the search for other antimalarials. The greatest impetus for the development of synthetic dmgs came this century when the two World Wars intermpted the supply of cinchona bark to the combatants. A stmcturally related 4-quinolinemethanol is mefloquine (65, Lariam [51773-92-3]) which now serves as an effective alternative agent for chloroquine-resistant P. falciparum. This is a potent substance that requires less than one-tenth the dose of quinine to effect cures. There are some untoward side effects associated with this dmg such as gastrointestinal upset and dizziness, but they tend to be transient. Mefloquine is not recommended for use by those using beta-blockers, those whose job requires fine coordination and spatial discrimination, or those with a history of epilepsy or psychiatric disorders. A combination of mefloquine with Fansidar (a mixture of pyrimethamine and sulfadoxine) is known as Fansimef but its use is not recommended. Resistance to mefloquine has been reported even though the compound has not been in wide use. [Pg.273]

G. B. Kauffman, Inorganic Coordination Compounds, Heyden, London, 1981. An excellent volume on the history of coordination compounds prior to 1935. [Pg.174]

Metal compounds, particularly compounds of the heavy metals, have a history of importance as antimicrobial agents. Because of regulations regarding economic poisons in the environment they are no longer widely used in this appHcation. Mercury, lead, cadmium, uranium, and other metals have been imphcated in cases of poisoning that resulted in government response. The metals whose compounds have been of primary interest as antimicrobials are mercury, silver, and copper. [Pg.135]

Latex Adhesive Applications. Polychloroprene latex adhesives have a long history of use in foil laminating adhesives, facing adhesives, and constmction mastics. Increasingly stringent restrictions on the emission of photoreactive solvents has heightened interest in latex compounds for broader apphcations, particularly contact bond adhesives. Table 10 makes a general comparison of solvent and latex contact bond adhesives (158). [Pg.547]

The penicillins are a class of compound having the general structure (1). Because of their unique effectiveness in the treatment of bacterial infections in humans, these compounds have been investigated intensively from the chemical, microbiological and clinical points of view since about 1940. The early history of these developments (see especially B-80MI51100, B-49MI51100) contains the following pivotal studies ... [Pg.299]

There are, however, some crown type compounds which contain no structural feature except the thiophene subunit, and these deserve some comment here. This is especially true since one of these compounds was prepared very early in the history of crown compounds. Ahmed and Meth-Cohn were interested in sulfur analogs of the porphyrin ring system and prepared compound 7 in 1969 by the method shown in Eq. [Pg.269]

Table 17.1 Early history of the halogens and their compounds... Table 17.1 Early history of the halogens and their compounds...
By contrast with the elusive though isolable HOF, the history of HOCl goes back over two centuries to the earliest experiments of C. W. Scheele with CI2 in 1774 (p. 792), and the bleaching and sterilizing action of hypochlorites have long been used both industrially and domestically. HOCl, HOBr and HOI are all highly reactive, relatively unstable compounds that are known primarily in aqueous solutions. The most convenient preparation of such solutions is by perturbing the hydrolytic disproportionation equilibrium (p. 856) ... [Pg.857]

The introduction of synthetic materials into natural products, often described as adulteration , is a common occurrence in food processing. The types of compounds introduced, however, are often chiral in nature, e.g. the addition of terpenes into fruit juices. The degree to which a synthetic terpene has been added to a natural product may be subsequently determined if chiral quantitation of the target species is enabled, since synthetic terpenes are manufactured as racemates. Two-dimensional GC has a long history as the methodology of choice for this particular aspect of organic analysis (38). [Pg.65]


See other pages where History of compounding is mentioned: [Pg.1168]    [Pg.16]    [Pg.8]    [Pg.364]    [Pg.1168]    [Pg.1168]    [Pg.16]    [Pg.8]    [Pg.364]    [Pg.1168]    [Pg.2114]    [Pg.240]    [Pg.107]    [Pg.545]    [Pg.539]    [Pg.197]    [Pg.328]    [Pg.286]    [Pg.121]    [Pg.414]    [Pg.64]    [Pg.334]    [Pg.115]    [Pg.448]    [Pg.120]    [Pg.316]    [Pg.121]    [Pg.136]    [Pg.544]    [Pg.39]    [Pg.60]    [Pg.123]    [Pg.274]    [Pg.279]    [Pg.477]    [Pg.145]    [Pg.111]    [Pg.632]    [Pg.262]    [Pg.59]   
See also in sourсe #XX -- [ Pg.16 ]




SEARCH



Compounding history

History of elementoorganic compounds

© 2024 chempedia.info