Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

High impact polystyrene HIPS process

MODIFIED HIGH-IMPACT POLYSTYRENE (HIPS) PROCESS... [Pg.587]

High-impact polystyrene (HIPS) Processability, impact strength HDT... [Pg.533]

Polystyrene. Polystyrene [9003-53-6] is a thermoplastic prepared by the polymerization of styrene, primarily the suspension or bulk processes. Polystyrene is a linear polymer that is atactic, amorphous, inert to acids and alkahes, but attacked by aromatic solvents and chlorinated hydrocarbons such as dry cleaning fluids. It is clear but yellows and crazes on outdoor exposure when attacked by uv light. It is britde and does not accept plasticizers, though mbber can be compounded with it to raise the impact strength, ie, high impact polystyrene (HIPS). Its principal use in building products is as a foamed plastic (see Eoamed plastics). The foams are used for interior trim, door and window frames, cabinetry, and, in the low density expanded form, for insulation (see Styrene plastics). [Pg.327]

In the late 1940s, the demand for styrene homopolymers (PS) and styrene-acrylonitrile copolymers (SAN) was drastically reduced due to their inherent brittleness. Thus, the interest was shifted to multiphase high-impact polystyrene (HIPS) and rubber-modified SAN (ABS). In principle, both HIPS and ABS can be manufactured by either bulk or emulsion techniques. However, in actual practice, HIPS is made only by the bulk process, whereas ABS is produced by both methods [132,133]. [Pg.656]

Polycarbonate is blended with a number of polymers including PET, PBT, acrylonitrile-butadiene-styrene terpolymer (ABS) rubber, and styrene-maleic anhydride (SMA) copolymer. The blends have lower costs compared to polycarbonate and, in addition, show some property improvement. PET and PBT impart better chemical resistance and processability, ABS imparts improved processability, and SMA imparts better retention of properties on aging at high temperature. Poly(phenylene oxide) blended with high-impact polystyrene (HIPS) (polybutadiene-gra/f-polystyrene) has improved toughness and processability. The impact strength of polyamides is improved by blending with an ethylene copolymer or ABS rubber. [Pg.143]

In 1954, Dow finally perfected a can process to make high-impact polystyrene (HIPS). The secret was that the traditional can process could not simply be used since the product would be full of gel particles of rubber ( fish-eyes ) instead, the styrene-rubber mixture was first carried out to 30% conversion with shearing agitation. Then the mixture was transferred to 10 gallon cans where the reaction was completed. This process was documented in the now famous Amos patent [18]. [Pg.18]

Other chemical companies have also designed their own continuous process to produce high-impact polystyrene (HIPS), such as the Dow process, which consists of three elongated reactors in series (US Patent 2727 884, 1955) the BASF process, which consists of a prepolymerization CSTR followed by cascade of three CSTRs (US Patent 3 658 946, 1972) the Shell process, which consists of three CSTRs followed by a plug flow reactor (US Patent 4011 284, 1977) and the Monsanto process, which consists of a CSTR followed by a horizontal plug flow reactor (US Patent 3 903 202, 1975). [Pg.107]

The preparation of ASA in bulk or bulk-suspension polymerization processes has been described by McKee et al. [14-18]. The system is similar to that used in the preparation of high-impact polystyrene (HIPS) and in bulk-produced ABS. Thereby the rubber was prepared using free radical polymerization, dissolved in the SAN monomers which were then polymerized using free radicals. Phase separation between the rubber and PSAN occurred, followed by phase inversion. [Pg.345]

Table 9-2 summarizes differences between polybutadiencs produced by different processes. The low c/i-content polybutadienes are branched. Tliey have lower solution viscosities than their linear counterparts and are preferred for manufacture of high impact polystyrene (HIPS) in which polymerization takes place in a solution of the elastomer in styrene. As the reaction proceeds under agitation, polystyrene becomes the continuous phase, with dispersed droplets of rubber (see Chapter 11). The high m-content, linear polybutadienes are more elastomeric... [Pg.340]

Bulk polymerization is the main process for making high-impact polystyrene (HIPS). Polybutadiene is dissolved in styrene at 3-10% (w/w) concentration and the styrene is polymerized with careful agitation. Phase separation occurs with polybutadiene-g-polystyrene separating out. The final product is a dispersion of polybutadiene particles, which themselves contain occluded polystyrene. Polymerization conditions are adjusted to control the size and volume of these particles, which range respectively from 0.1 to 6.0 pm and 0.1 to 0.4 volume fraction of the material. [Pg.358]

Application The INEOS polystyrene (PS) technology is based on a bulk continuous process giving access to a wide range of general purpose polystyrene (GPPS) also known as crystal polystyrene and high-impact polystyrene (HIPS), which incorporates rubber particles for high shock absorbance. [Pg.239]

High Impact Polystyrene (HIPS) HIPS is a heterogeneous material produced by continuous bulk or bulk-suspension processes, in which a butadiene-based elastomer (polybutadiene (PB), or a block copolymer of styrene-butadiene) is first dissolved in styrene monomer (St) and the resulting mixture is then heated so that the polymerization proceeds either thermally or with the aid of a chemical initiator. At the molecular level, the product is a mixture of free polystyrene (PSt) chains and elastomer chains grafted with PSt side chains. The process yields a continuous (free) PSt matrix containing... [Pg.207]

A number of important commercial resins are manufactured by suspension polymerization, including poly(vinyl chloride) and copolymers, styrene resins [general purpose polystyrene, EPS, high impact polystyrene (HIPS), poly(styrene-acrylonitrile) (SAN), poly(acrylonitrile-butadiene-styrene) (ABS), styrenic ion-exchange resins], poly(methyl methacrylate) and copolymers, and poly(vinyl acetate). However, some of these polymers rather use a mass-suspension process, in which the polymerization starts as a bulk one and, at certain conversion, water and suspending agents are added to the reactor to form a suspension and continue the polymerization in this way up to high conversions. No continuous suspension polymerization process is known to be employed on a... [Pg.306]

As we said earlier, the introduction of aromatic units into the main chain results in polymers with better thermal stability than their aliphatic analogs. One such polymer is poly(phenylene oxide), PPO, which has many attractive properties, including high-impact strength, resistance to attack by mineral and organic acids, and low water absorption. It is used, usually blended with high-impact polystyrene (HIPS), to ease processability in the manufacture of machined parts and business machine enclosures. [Pg.64]


See other pages where High impact polystyrene HIPS process is mentioned: [Pg.416]    [Pg.419]    [Pg.541]    [Pg.657]    [Pg.71]    [Pg.328]    [Pg.147]    [Pg.330]    [Pg.416]    [Pg.419]    [Pg.22]    [Pg.172]    [Pg.250]    [Pg.255]    [Pg.54]    [Pg.153]    [Pg.310]    [Pg.321]    [Pg.660]    [Pg.518]    [Pg.324]    [Pg.16]    [Pg.645]    [Pg.1029]    [Pg.244]    [Pg.278]    [Pg.143]    [Pg.147]    [Pg.444]    [Pg.110]   


SEARCH



HIGH IMPACT

HIPS

Hipping

Impact polystyrene

Modified High-impact Polystyrene (HIPS) Process

Polystyrene processing

© 2024 chempedia.info